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Abstract

This thesis develops novel statistical methodologies to bring closer the fields of extreme
value theory and causality. It revolves around two independent axes of research.

The first axis studies causal discovery for extreme events, where one can infer the
causal structure of a system by exploiting the signal in the tails of the variables. In
the first project, we introduce a causal coefficient that identifies the causal relationship
of heavy-tailed pairs of variables. Then, we propose a computationally highly efficient
algorithm based on this causal tail coefficient to recover the causal order of a set of
variables. Finally, we compare our method to other well-established and non-extremal
approaches in causal discovery on synthetic and real data.

The second axis of research develops flexible predictive models for extremes and dis-
tribution generalization. The second project of this thesis develops a quantile regression
method to estimate extreme quantiles given a large set of predictors. Our method com-
bines the flexibility of the random forests with the extrapolation guarantees of the gener-
alized Pareto distribution. In simulations, our method is competitive with both classical
quantile regression methods and existing regression approaches from extreme value the-
ory. Finally, we apply our methodology to extreme quantile prediction for U.S. wage data.
The third project of this thesis studies the problem of distribution generalization from a
causal perspective. We assume the data comes from different environments that shift the
mean of the predictors so that the training and test distributions are different. We model
distributional shifts with the concept of causal intervention. Here, we propose a method
to learn a nonparametric function with invariant predictions across environments and as
predictive as possible, defined as the invariant most predictive (IMP) function. We show
identification of the IMP, provide minimax guarantees over unseen environments over
the class of square-integrable functions, and propose an adaptation of the regression tree
algorithm to learn the IMP function nonparametrically in large dimensions.





Résumé

Cette thèse développe de nouvelles méthodologies statistiques pour rapprocher les do-
maines de la théorie des valeurs extrêmes et de la causalité. Il s’articule autour de deux
axes de recherche indépendants.

Le premier axe étudie la découverte causale pour les événements extrêmes, où l’on
peut déduire la structure causale d’un système en exploitant le signal dans les queues
des variables. Dans le premier projet, nous introduisons un coefficient causal qui identifie
la relation causale des paires de variables à queue lourde. Ensuite, nous proposons un
algorithme de calcul hautement efficace basé sur ce coefficient de queue causale pour
récupérer l’ordre causal d’un ensemble de variables. Enfin, nous comparons notre méthode
à d’autres approches bien établies et non extrêmes de découverte causale sur des données
synthétiques et réelles.

Le deuxième axe de recherche développe des modèles prédictifs flexibles pour les
extrêmes et la généralisation de la distribution. Le deuxième projet de cette thèse
développe une méthode de régression quantile pour estimer les quantiles extrêmes étant
donné un large ensemble de prédicteurs. Notre méthode combine la flexibilité des forêts
aléatoires avec les garanties d’extrapolation de la distribution de Pareto généralisée. Dans
les simulations, notre méthode est compétitive à la fois avec les méthodes classiques de
régression quantile et avec les approches de régression existantes issues de la théorie des
valeurs extrêmes. Enfin, nous appliquons notre méthodologie à la prédiction des quan-
tiles extrêmes pour les données sur les salaires aux États-Unis. Le troisième projet de
cette thèse étudie le problème de la généralisation de la distribution dans une perspective
causale. Nous supposons que les données proviennent de différents environnements qui
modifient la moyenne des prédicteurs de sorte que les distributions d’apprentissage et de
test sont différentes. Nous modélisons les changements de distribution avec le concept
d’intervention causale. Ici, nous proposons une méthode pour apprendre une fonction
non paramétrique avec des prédictions invariantes à travers les environnements et aussi
prédictive que possible, définie comme la fonction invariante la plus prédictive (IMP).
Nous montrons l’identification de l’IMP, fournissons des garanties minimax sur différents
environnements sur la classe des fonctions carrées intégrables et proposons une adapta-
tion de l’algorithme d’arbre de régression pour apprendre la fonction IMP de manière non
paramétrique en grandes dimensions.
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Introduction

This thesis develops novel statistical methodologies to build a bridge between the fields
of extreme value theory and causality. The goal of causal inference is to infer causal
relationships from data. Causal models describe a system’s behaviour under interventions
providing a richer understanding of the data-generating process (Pearl, 2009b; Peters
et al., 2017). Understanding how a system reacts under interventions is crucial whenever
one needs to predict the effect of treatments (e.g., in medicine) or policy changes (e.g., in
social sciences). Moreover, causal models can be helpful even in pure prediction problems
since they provide invariant predictions when the training and test data do not follow
the same distribution. Extreme value theory (EVT) is the branch of statistics dealing
with the modelling and inference of rare events. On the one hand, the study of univariate
extremes is well-understood (de Haan and Ferreira, 2006, Resnick, 2008). On the other
hand, several applications require an understanding of extreme joint events (Coles and
Tawn, 1996; de Haan et al., 1999; Schlather and Tawn, 2003; Engelke and Hitz, 2020) and
extreme events conditionally on a set of predictors (Chernozhukov, 2005; Wang and Tsai,
2009).

This thesis revolves around two independent axes of research. The first axis studies
causal discovery for extreme events. While much progress has been made in the formal-
ization of causal language (Spirtes et al., 2000; Pearl, 2009b; Imbens and Rubin, 2015;
Peters et al., 2017), there are several situations where causal relationships manifest them-
selves only in extreme events. As stated by (Cox and Wermuth, 1996, Sec. 8.7), one
can view extreme events as ‘natural interventions’ that convey causal information. From
this perspective, one can infer the causal structure of a system by exploiting the signal
in the tails of the variables. For example, in hydrology, one can reconstruct the topol-
ogy of a river network by observing extreme river discharges at different points along
the basin (Asadi et al., 2015). From a different angle, one can argue that the causal
mechanisms during extreme events differ from those in the tails of the distribution. For
example, in financial markets, we often observe regime changes between quiet periods
and turmoil. Forbes and Rigobon (2002) describe these extremal causal mechanisms in
terms of contagion, i.e., a single significant shock propagating through a given system. In
Earth system science, there are also examples of different causal structures between the
bulk of the data and the tails. For instance, Seneviratne et al. (2010) study the causal
mechanism between air temperature and evapotranspiration of the soil moisture and show
a regime change between low and high temperatures. Engelke and Hitz (2020) recently
connected the fields of graphical models (Lauritzen, 1996) and extremes. They defined a
notion of conditional independence for extremes to build sparse and parsimonious models
in high-dimensions (Engelke and Ivanovs, 2021; Engelke and Volgushev, 2020). While
graphical models do not necessarily have a causal meaning, future research in causality
for extremes will benefit from these novel results.

The second axis of research develops flexible predictive models for extremes and dis-
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tribution generalization. The first work in this direction develops a quantile regression
method, named Extremal Random Forests (ERF), to estimate extreme quantiles given
a large set of predictors. The proposed method could be adapted to estimate treatment
effects (Athey et al., 2019) at extreme quantile levels (Deuber et al., 2021) when the
quantile regression surface is nonlinear and the treatment has large dimensions. Relevant
applications in this direction are in climate science when one is interested in measuring
the impact of climate change on extreme weather events.

The second work along this axis introduces a regression method when the training
and test distributions are different. Most machine learning algorithms assume that the
training and test data are independent and identically distributed (i.i.d.). However, in
several applications, the data comes from heterogeneous environments, and it is hard to
justify the i.i.d. assumption. Here, we frame the problem of distribution generalization
from a causal perspective by modelling distributional shifts using the concept of causal
interventions (Meinshausen, 2018; Rothenhäusler et al., 2021). While this work considers
the regression setting, we consider extending it to extreme quantile regression as a next
step.

Axis 1 – causal discovery for extreme events

The first work of this thesis studies causal discovery in the presence of extreme events.
We can look at the goal from two angles. On the one hand, we would like to define a
notion of causality for extreme events, where the causal mechanism in the tail may differ
from the one in the bulk of the distributions. On the other hand, causal relationships
manifest themselves more clearly during extreme events, and thus, we exploit the signal
in the distribution’s tails to perform classical causal discovery.

Prior to this work, the literature combining causality and extremes was sparse. No-
table mentions are the works from Gissibl and Klüppelberg (2018) and Gissibl et al. (2020)
about max-linear models, from Naveau et al. (2018) about causal analysis in climate sci-
ence using extreme events, and Mhalla et al. (2020) who develop a causal discovery method
based on the concept of the Kolmogorov complexity of extreme conditional quantiles.

We consider a linear structural causal model (SCM) (Pearl, 2009b; Peters et al., 2017)
with independent heavy-tailed noise terms that share the same tail index. The goal is to
recover the causal order of the variables from observational data. Linear non-Gaussian
acyclic models (LiNGAM) exploit non-Gaussian errors to recover the causal structure of
the SCM (Shimizu et al., 2006, 2011; Hyvärinen and Smith, 2013). Unlike these methods,
which consider the whole data distribution, here we define a causal coefficient that focuses
on the bivariate tails of the data. Our causal tail coefficient encodes causal relationships
between pairs of variables by exploiting the signal in the bivariate tails of the distribu-
tion. We propose a nonparametric estimator for the causal tail coefficient and show its
consistency. Based on the causal tail coefficient, we devise the Extremal Ancestral Search
(EASE) algorithm that recovers a valid causal from data and is consistent as the sample
size tends to infinity. After comparing the EASE algorithm to well-established methods
in causality, we apply it to river discharges and financial datasets.
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Axis 2 – flexible methods for extremes and distribu-
tion generalization
The second and third works develop novel, flexible predictive methods for extremes and
distribution generalization.

In Chapter 2, we introduce the extremal random forests (ERF) algorithm to predict
conditional extreme quantiles when the predictor space has a large dimension. On the
one hand, the literature on flexible quantile regression is not well suited when the quantile
levels are beyond the range of the observed data (Meinshausen, 2006; Athey et al., 2019).
On the other hand, the approaches that estimate extreme conditional quantiles based on
the GPD do not scale well with large dimensional predictor spaces (Chernozhukov, 2005;
Wang et al., 2012; Youngman, 2019). Here, we propose to combine the GRF from Athey
et al. (2019) with the tail extrapolation of the GPD. GRF is an ensemble method that
grows trees that split the predictor space according to custom losses, in this case, quantile
loss (Athey et al., 2019). The GPD is a limit distribution that describes observations
exceeding an increasing threshold and applies to the most common densities (Balkema and
de Haan, 1974). It is a parametric distribution indexed by the shape and scale parameter.
The shape parameter determines the decay of the tail, differentiating heavy, light, and
short-tailed distributions. For a given predictor point in the sample space, we propose
to fit a weighted GPD log-likelihood, using the similarity weights from a quantile GRF.
The weights from GRF take care of the dimensionality of the predictor space, whereas the
GPD deals with the sparse observations at high quantiles. Under simplifying assumptions,
we show that the estimated parameters of the GPD are consistent. In practice, the shape
of the quantile function is most sensitive to the shape parameter of the GPD. Therefore,
we further introduce penalization while fitting the weighted log-likelihood. We compare
our ERF algorithm to other quantile regression methods and apply it to the U.S. wage
data set (Angrist et al., 2009).

In Chapter 3 we consider the problem of distribution generalization in a regression
setup (Quiñonero-Candela et al., 2009) when the data comes from heterogeneous envi-
ronments. The goal is to develop a predictive method that minimizes the worst-case
mean squared prediction error (MSPE) over unseen environments, i.e., it is minimax. We
assume that different environments induce shifts in the predictors’ means, we allow for
hidden confounders, and we consider a possibly large dimensional predictor space.

Rothenhäusler et al. (2021) first introduced this problem in a linear setup. They con-
sider an instrumental variable (IV) model where the causal function is under-identified,
i.e., there are more predictors than instruments, and where the instruments are invalid,
i.e., they can directly affect the response (Angrist et al., 1996; Imbens, 2014). They
cast the problem of distribution generalization from a causal perspective, where the in-
struments encode different environments and causal interventions describe shifts in such
environments. They develop the anchor regression method that interpolates between ordi-
nary least squares (OLS) and IV solution and minimizes the worst-case MSPE. Bühlmann
(2020) extends anchor regression to a nonlinear setup and proposes a predictive method
based on the gradient boosting algorithm (Friedman, 2001a). However, from Bühlmann
(2020) it is unclear whether the proposed method minimizes the worst-case MSPE over
unseen environments. Christiansen et al. (2021) develop the NILE algorithm, a predictive
method to achieve distribution generalization in the nonlinear anchor regression setup.
On the one hand, the NILE algorithm outperforms other well-established methods in ex-
periments. However, on the other hand, it has no minimax guarantees, and, in practice,
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it works well only with a few predictors.
Our work extends the anchor regression setup when the predictive functions are non-

linear, and the environments act linearly on the predictors. We develop a flexible method
that minimizes the worst-case MSPE over unseen environments and scales well with large
dimensional predictor space. First, we define the invariant most predictive (IMP) func-
tion. The IMP function (i) achieves invariant performance across the environments, and
(ii) is as predictive as possible. Using the literature on control functions (Ng and Pinkse,
1995; Newey et al., 1999), we provide identification of the IMP function. Moreover, we
prove that the IMP is minimax over the class of square-integrable functions. Finally,
we propose an adaptation of the regression trees algorithm from Breiman et al. (1984)
to learn the IMP nonparametrically and in large dimensions. In the following steps, we
intend to extend the algorithm to random forests and show its consistency. Moreover, we
plan to implement and apply the algorithm to real-world datasets in Earth system science
and medicine.

Structure of the thesis
This thesis consists of three chapters corresponding to the following projects.

Chapter 1: N. Gnecco, N. Meinshausen, J. Peters, S. Engelke. Causal discovery in heavy-
tailed models. Annals of Statistics, 49(3): 1755 – 1778, 2021.

Chapter 2: N. Gnecco, E. M. Terefe, S. Engelke. Extremal Random Forests. Under
revision for the Journal of the American Statistical Association, Theory and Methods,
https:// arxiv.org/ abs/ 2201.12865 .

Chapter 3: N. Gnecco, N. Pfister, J. Peters, S. Engelke. Distribution generalization in
semi-parametric models: A control function approach. Manuscript.

Supplementary information for each article is in the corresponding appendix at the end
of the thesis.

https://arxiv.org/abs/2201.12865


Chapter 1

Causal discovery in heavy-tailed data

Joint work with
Nicolai Meinshausen, Jonas Peters, and Sebastian Engelke

Abstract

Causal questions are omnipresent in many scientific problems. While much
progress has been made in the analysis of causal relationships between ran-
dom variables, these methods are not well suited if the causal mechanisms only
manifest themselves in extremes. This work aims to connect the two fields of
causal inference and extreme value theory. We define the causal tail coefficient
that captures asymmetries in the extremal dependence of two random vari-
ables. In the population case, the causal tail coefficient is shown to reveal the
causal structure if the distribution follows a linear structural causal model.
This holds even in the presence of latent common causes that have the same
tail index as the observed variables. Based on a consistent estimator of the
causal tail coefficient, we propose a computationally highly efficient algorithm
that estimates the causal structure. We prove that our method consistently
recovers the causal order and we compare it to other well-established and non-
extremal approaches in causal discovery on synthetic and real data. The code
is available as an open-access R package.

Keywords: causality, extreme value theory, heavy-tailed distributions, non-parametric
estimation.

1.1 Introduction and background
Reasoning about the causal structure underlying a data generating process is a key sci-
entific question in many disciplines. In recent years, much progress has been made in the
formalisation of causal language (Pearl, 2009b; Spirtes et al., 2000; Imbens and Rubin,
2015). In several situations, causal relationships manifest themselves only in extreme
events. As stated by Cox and Wermuth (1996, Sec. 8.7), large interventions (also named
natural experiments) often carry information that is likely to be causal. In this light,
one can view extreme observations as natural experiments that perturb a given system
and facilitate causal analysis. On the one hand, existing causal methodology, focuses on
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moment related quantities of the distribution and is not tailored to estimate causal rela-
tionships from extreme events. On the other hand, the statistics of univariate extremes
is relatively well understood (Resnick, 1987) and there is a large set of tools for the anal-
ysis of heavy-tailed distributions. This work attempts to bring the fields of causality and
extremes closer.

Let us first consider a bivariate random vector (X1, X2) and assume that we are in-
terested in the causal relationship between the two random variables, X1 and X2. We
consider a linear structural causal model (Pearl, 2009b, Sec. 1.4) over variables including
(X1, X2) (without feedback mechanisms). We can then distinguish between the six sce-
narios of causal configurations shown in Figure 1.1 that include X1, X2 and possibly a
third unobserved random variable X0. This collection is complete in the following sense.
Any structural causal model including X1 and X2 is interventionally equivalent (e.g., Pe-
ters et al., 2017, Sec. 6.8) to one of the examples shown in Figure 1.1 when taking into
account interventions on X1 or X2 only. The dashed edges can be interpreted as directed
paths induced by a linear structural causal model (SCM); see Section 1.1.1 for a formal
definition. Here and in the sequel, we say that “X1 is the cause of X2” or “X1 causes X2”

X1 X2

(a-1)
X1 X2

(b-1)
X1 X2

(c)

X0

X1 X2

(a-2)

X0

X1 X2

(b-2)

X0

X1 X2

(d)

Figure 1.1: The six possible causal configurations between X1 and X2, and possibly a
third unobserved variable X0. The variable X0 will be referred to as a hidden confounder.
Formal definitions are included in Section 1.1.1. We will see in Section 1.2.2 that both
configurations (a-1) and (a-2), for example, show the same tail coefficient behaviour. The
enumeration letters (a)–(d) visualise the cases in Table 1.2.1.

if there is a directed path from X1 to X2 in the SCM’s underlying directed acyclic graph
(DAG). Assume that X1 is the cause of X2, and that both variables are heavy-tailed.
Intuitively, if the causal relationship is monotonic, then an extremely large value of X1
should cause an extreme value of X2. The causal direction should, therefore, be strongly
visible in the largest absolute values of the random variables. Here, “extreme” is to be
seen in the respective scale of each variable, so it will make sense to consider the copula
{F1(X1), F2(X2)}, where Fj is the marginal distribution of Xj, j = 1, 2. To exploit this
intuition, we define the causal tail coefficient between variables X1 and X2 as

Γ12 := lim
u→1−

E
[
F2(X2) | F1(X1) > u

]
∈ [0, 1], (1.1.1)

if the limit exists. It reflects the causal relationship between X1 and X2 since, intuitively,
if X1 has a monotonically increasing causal influence on X2, we expect Γ12 to be close
to one. Conversely, extremes of X2 will not necessarily lead to extremes of X1 and
therefore, the coefficient Γ21, where the roles of X1 and X2 in (1.1.1) are reversed, may be
strictly smaller than one. This asymmetry will be made precise in Theorem 1.3 for linear
structural causal models with heavy-tailed noise variables, and it forms the basis of our
causal discovery algorithm.
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A different perspective of our approach goes beyond the usual way of defining causal-
ity in the bulk of distribution. Namely, by looking at the signal in the tails, we might
recover an extremal causal mechanism that is not necessarily present in the central part
of the distribution. An example of this can be observed in financial markets. During
calm periods, it is not clear whether any causal relationship exists among the financial
variables. However, during turmoil, it is common to observe one specific stock or sec-
tor causing very negative (or positive) returns of other stocks (or sectors), displaying an
extremal causal mechanism. In the finance literature, the concept of extremal causal
mechanism is explained in terms of contagion, i.e., the spread of shocks across different
markets (see Forbes and Rigobon, 2002). For example, Rodriguez (2007) uses a copula
model with time-varying parameters to explain such contagion phenomena within coun-
tries in Latin America and Asia. On the other hand, there are also applications where
the causal mechanism is present in the bulk of the distribution but absent in the tails.
Seneviratne et al. (2010) present this type of causal relationship between air temperature
and the evapotranspiration of soil moisture. As the air temperature increases, the evap-
otranspiration process increases, too. This continues until the soil moisture resources are
reduced to the point that a further increase in the temperature has no causal effect on
the evapotranspiration.

Heavy-tailed distributions are an example of non-Gaussian models, which have re-
ceived some attention in the causal literature. The LiNGAM algorithm (Shimizu et al.,
2006) exploits non-Gaussianity through independent component analysis (Comon, 1994)
to estimate an underlying causal structure. Misra and Kuruoglu (2016) consider stable
noise variables in a Bayesian network and develop a structure learning algorithm based
on BIC. The work of Gissibl et al. (2020) also studies causal questions related to extreme
events. They consider max-linear models (Gissibl and Klüppelberg, 2018) where only the
largest effect propagates to the descendants in a Bayesian network. The work by Naveau
et al. (2018) falls within the domain of attribution science. Namely, by studying extreme
climate events, they try to answer counterfactual questions such as “what the Earth’s cli-
mate might have been without anthropogenic interventions”. Mhalla et al. (2020) develop
a method to estimate the causal relationships between bivariate extreme observations.
It relies on the Kolmogorov complexity concept (see Kolmogorov, 1968) adapted to high
conditional quantiles. Engelke and Ivanovs (2021) reviews recent work on causality and
sparsity in extremes.

The rest of the paper is organised as follows. Sections 1.1.1 and 1.1.2 briefly review
structural causal models and some important concepts from extreme value theory. Sec-
tion 1.2 contains a causal model for heavy-tailed distributions with positive coefficients.
We prove that, given the underlying distribution, the causal tail coefficient allows us to
distinguish between the causal scenarios shown in Figure 1.1. In Section 1.3, we introduce
an algorithm named extremal ancestral search (EASE) that can be applied to a matrix of
causal tail coefficients and that retrieves the causal order of the true graph, in the popu-
lation case. We prove that our algorithm estimates a causal order even in the case where
the causal tail coefficients are estimated empirically from data, as the sample size tends
to infinity. In Section 1.4, we first generalise the results of the previous sections to the
case of a structural causal model with real-valued coefficients. To do that, we introduce a
more general causal tail coefficient that is sensitive to both the upper and lower tail of the
variables. Second, we discuss the robustness properties of EASE in the presence of hidden
confounders. Third, we analyse the properties of the causal tail coefficient when the noise
variables have different tail indices. Section 1.5 contains experiments on simulated data
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and real-world applications. The Appendix consists of six sections. Section A.1 sum-
marises important facts about regularly varying random variables. Section A.2 contains
the proofs of the results of the paper. Section A.3 illustrates how the EASE algorithm re-
trieves a causal order of a DAG. Section A.4 describes the settings used in the simulation
study. Section A.5 contains additional figures and tables. Section A.6 presents further
results for Section 1.5.2.

1.1.1 Structural causal models
A linear structural causal model, or linear SCM, (Bollen, 1989; Pearl, 2009b, Sec. 1.4)
over variables X1, . . . , Xp is a collection of p assignments

Xj :=
∑

k∈pa(j)
βjkXk + εj, j ∈ V, (1.1.2)

where pa(j) ⊆ V = {1, . . . , p} and βjk ∈ R \ {0}, together with a joint distribution
over the noise variables ε1, . . . , εp. Here, we assume that the noise variables are jointly
independent and that the induced graph G = (V,E), obtained by adding directed edges
from the parents pa(j) to j, is a directed acyclic graph (DAG) with nodes V and (directed)
edges E ⊂ V × V . To ease notation, we adopt the convention to sometimes identify a
node with its corresponding random variable. To highlight the fact that pa(j) depends
on a specific DAG G, we write pa(j, G), j ∈ V .

Structural causal models describe not only observational distributions but also inter-
ventional distributions. An intervention on Xj, for example, is defined as replacing the
corresponding assignment (1.1.2) while leaving the other equations as they were. In prac-
tice, a causal model can be falsified via randomised experiments (see, e.g., Peters et al.,
2017, Sec. 6.8).

We define a directed path between node j and k as a sequence of distinct vertices such
that successive pairs of vertices belong to the edge set E of G. If there is a directed path
from j to k, we say that j is an ancestor of k in G. The set of ancestors of j is denoted
by An(j, G), and we write an(j,G) = An(j,G) \ {j} when we consider the ancestors of j
except itself. A node j that has no ancestors, i.e., an(j,G) = ∅, is called a source node (or
root node). Given two nodes j, k ∈ V , we say that Xj causes Xk if there is a directed path
from j to k in G. Furthermore, given nodes i, j, k ∈ V , we say that Xi is a confounder (or
common cause) of Xj and Xk if there is a directed path from node i to node j and k that
does not include k and j, respectively. Whenever a confounder is unobserved, we say it is
a hidden confounder or hidden common cause. Finally, if An(j,G) ∩ An(k,G) = ∅, then
we say that there is no causal link between Xj and Xk. A graph G1 = (V1, E1) is called
a subgraph of G if V1 ⊆ V and E1 ⊆ (V1 × V1) ∩ E. Recall that any subgraph of a DAG
G is also a DAG. For details on graphical models, we refer to Lauritzen (1996).

1.1.2 Regularly varying functions and random variables
A positive, measurable function f is said to be regularly varying with index α ∈ R,
f ∈ RVα, if it is defined on some neighbourhood of infinity [x0,∞), x0 > 0, and if for all
c > 0, limx→∞ f(cx)/f(x) = cα. If α = 0, f is said to be slowly varying, f ∈ RV0.

A random variable X is said to be regularly varying with index α if

P(X > x) ∼ `(x)x−α, x→∞,
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for some ` ∈ RV0, where for any function f and g, we write f ∼ g if f(x)/g(x) → 1 as
x → ∞. If X is regularly varying with index α then cX is also regularly varying with
the same index, for any c > 0. For example, random variables with a Student’s-t, Pareto,
Cauchy, or Fréchet distribution are regularly varying.

A characteristic property of regularly varying random variables is the max-sum-equivalence.
The idea is that large sums of independent random variables tend to be driven by only
one single large value. For this reason, the tail of the distribution of the maximum is equal
to the tail of the distribution of the sum. For a rigorous formulation see Appendix A.1.
We refer to Embrechts et al. (1997, Sec. A3) for further details on regular variation and
max-sum-equivalence.

1.2 The causal tail coefficient
To measure the causal effects in the extremes, we define the following parameter.

Definition 1.1. Given two random variables X1 and X2, we define the causal tail coef-
ficient

Γjk = lim
u→1−

E
[
Fk(Xk) | Fj(Xj) > u

]
, (1.2.1)

if the limit exists, for j, k = 1, 2 and j 6= k.

The coefficient Γjk lies between zero and one and is invariant under any marginal
strictly increasing transformation since it depends on the rescaled margins Fj(Xj), for
j = 1, 2. Below, we lay down the setup.

1.2.1 Setup
Consider a linear structural causal model (SCM) with an induced directed acyclic graph
(DAG) G,

Xj :=
∑

k∈pa(j,G)
βjkXk + εj, j ∈ V,

where we assume that the coefficients βjk are strictly positive, j, k ∈ V . Let the inde-
pendent noise variables ε1, . . . , εp be real-valued and regularly varying with comparable
tails, i.e., there exists a tail-index α > 0 and ` ∈ RV0 such that for all j ∈ V , there exists
cj > 0 that satisfies

P(εj > x) ∼ cj`(x)x−α, x→∞. (1.2.2)

To simplify the notation, we rescale the variablesXj such that cj = 1, j ∈ V . Furthermore,
denote by βk→j the sum of distinct weighted directed paths from node k to node j, with
βj→j := 1. Since G is acyclic, we can express recursively each variable Xj, j ∈ V , as a
weighted sum of the noise terms ε1, . . . , εk that belong to the ancestors of Xj, that is,

Xj =
∑

h∈An(j,G)
βh→jεh. (1.2.3)

The noise terms in (1.2.3) are independent and regularly varying with comparable tails
as in (1.2.2). Therefore, by using Lemma A.1 of Appendix A.1, we can write

P(Xj > x) ∼
∑

h∈An(j,G)
βαh→j`(x)x−α, x→∞.
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Any probability distribution induced by an SCM is Markov with respect to the induced
DAG G, and thus we can read off statistical independencies from it by d-separation
(Lauritzen et al., 1990; Pearl, 2009b, Sec. 1.2.3). Conversely, to infer dependencies directly
from the graph, one needs to assume that the distribution is faithful to the DAG G (see
Spirtes et al., 2000, Sec. 2.3.3). Most causal methods based on restricted SCMs, such
as LiNGAM (see Shimizu et al., 2006), RESIT (Peters et al., 2014), and Peters and
Bühlmann (2014), do not assume faithfulness. Similarly, in this work we require the
milder assumption that βj→k is non-zero if j is an ancestor of k, i.e., Xj causes Xk. This
is automatically satisfied if the SCM has positive coefficients. In the sequel, we refer to
this model as a heavy-tailed linear SCM.

1.2.2 Causal structure and the causal tail coefficient
In the setting of Section 1.2.1, the causal tail coefficient always exists and carries infor-
mation about the underlying causal structure. In particular, it can be expressed in closed
form.

Lemma 1.2. Consider a heavy-tailed linear SCM over p variables. Then, for j, k ∈ V
and j 6= k,

Γjk = 1
2 + 1

2

∑
h∈Ajk

βαh→j∑
h∈An(j,G) β

α
h→j

,

where Ajk = An(j,G) ∩ An(k,G), and the sum over an empty index set equals zero.

For a proof see Appendix A.2.1. Lemma 1.2 provides a closed form expression for
the causal tail coefficient Γjk, which can be written as a sum of two terms. The first
term corresponds to the case when Xj and Xk are independent. The second term is non-
negative and depends on the coefficients of the SCM and the tail index α > 0. By using
matrix notation, it is possible to express the coefficient Γjk more compactly. Consider the
matrix of coefficients B of the DAG G, where Bjk = βjk, j, k ∈ V , and let I be the identity
matrix. Furthermore, for any M ∈ Rp×p, denote by Mα the matrix where each entry of
M is raised to the power α. By applying the Neumann series, we obtain H = (I−B)−1

where Hjk = βk→j for j, k ∈ V . Therefore, for j, k ∈ V and j 6= k, we can write the causal
tail coefficient as

Γjk = 1
2 + 1

2
eTj HαeAjk

eTj HαeAn(j,G)
, (1.2.4)

where ej ∈ Rp is the j-th standard basis vector, and eC = ∑
j∈C ej ∈ Rp for any set

C ⊆ {1, . . . , p}.

Example 1.1. Consider the “diamond” graph G = (V,E) in Figure 1.2, with V =
{1, . . . , 4}. In this graph, for instance, it is easy to see that Γ14 = 1. To compute Γ41, we
list the weighted directed paths from the ancestors of node 4 to node 4 itself, i.e.,

β1→4 = β42β21 + β43β31, β2→4 = β42, β3→4 = β43, β4→4 = 1.

Additionally, the set of common ancestors of node 1 and 4 is A14 = {1}. Putting every-
thing together, by using Lemma 1.2, or formula (1.2.4), we obtain

Γ41 = 1
2 + 1

2
βα1→4

βα1→4 + βα2→4 + βα3→4 + βα4→4
< 1.
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Figure 1.2: Graphical representation of an SCM with an underlying “diamond” DAG G.

In this example, we see that it is possible to infer the causal relationship between X1 and
X4 because Γ14 > Γ41. /

Consider now a general, heavy-tailed linear SCM over p variables including X1 and
X2, and inducing graph G. The following theorem shows that the causal tail coefficient,
which is computable from the bivariate distribution of X1 and X2, see Equation (1.2.1),
encodes the causal relationship between the two variables.

Theorem 1.3. Consider a heavy-tailed linear SCM over p variables including X1 and X2,
as defined in Section 1.2.1. Then, knowledge of Γ12 and Γ21 allows us to distinguish the
following cases: (a) X1 causes X2, (b) X2 causes X1, (c) there is no causal link between
X1 and X2 (i.e., An(1, G) ∩ An(2, G) = ∅), (d) there is a node j 6∈ {1, 2}, such that
Xj is a common cause of X1 and X2 and neither X1 causes X2 nor X2 causes X1. The
corresponding values for Γ12 and Γ21 are depicted in Table 1.2.1.

Table 1.2.1: Summary of the possible values of Γ12 and Γ21 and the implications for
causality.

Γ21 = 1 Γ21 ∈ (1/2, 1) Γ21 = 1/2
Γ12 = 1 (a) X1 causes X2
Γ12 ∈ (1/2, 1) (b) X2 causes X1 (d) common cause
Γ12 = 1/2 (c) no causal link

For a proof see Appendix A.2.2. This result will also play a key role when estimating
causal relationships from finitely many data. As a first remark, condition (a) and (b)
might also include the presence of a common cause Xj. As a second remark, the empty
entries in Table 1.2.1 cannot occur under the assumptions made in Section 1.2.1. For
example, Γ12 = Γ21 = 1 can only happen if some variables have different tail indices. One
possibility is when the cause has a heavier tail than the effect. Another scenario is when
a common cause Xj, for some j 6= 1, 2, has heavier tails than the confounded variables
X1 and X2. For further discussion on different tail indices see Section 1.4.3.

1.2.3 A non-parametric estimator
Consider a heavy-tailed linear SCM over p variables including X1 and X2, with distribu-
tions F1 and F2, as described in Section 1.2.1. In order to construct a non-parametric
estimator of Γ12 and Γ21 based on independent observations (Xi1, Xi2), i = 1, . . . , n, of
(X1, X2), we define the empirical distribution function of Xj as

F̂j(x) = 1
n

n∑
i=1

1
{
Xij ≤ x

}
, x ∈ R, (1.2.5)
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for j = 1, 2. Denote by g← the left continuous generalised inverse

g←(y) = inf
{
x ∈ R : g(x) ≥ y

}
, y ∈ R.

In addition, let the (n− k)-th order statistics be denoted by X(n−k),j = F̂←j (1− k/n), for
all k = 0, . . . , n − 1 and j = 1, 2, such that X(1),j ≤ · · · ≤ X(n),j. Replacing F1 and F2
in the definition of Γ12 in (1.2.1) by the empirical counterparts, and the threshold u by
un = 1− k/n, for some integer 0 < k ≤ n− 1, we define the estimator

Γ̂12 = Γ̂(n)
12 = 1

k

n∑
i=1

F̂2(Xi2)1{Xi1 > X(n−k),1}. (1.2.6)

For this estimator to be consistent, a classical assumption in extreme value theory is
that the number of upper order statistics k = kn depends on the sample size n such
that kn → ∞ and kn/n → 0 as n → ∞. The first condition is needed to increase the
effective sample size, whereas the second condition eliminates the approximation bias.
The estimator Γ̂21 = Γ̂(n)

21 is defined in an analogous way as (1.2.6).

Theorem 1.4. Let Xi1 and Xi2, i = 1, . . . , n, be independent copies of X1 and X2,
respectively, where X1 and X2 are two of the p variables of a heavy-tailed linear SCM.

(A1) Assume that the density functions fj = F ′j, j = 1, 2, exist and satisfy the von Mises’
condition

lim
x→∞

xfj(x)
1− Fj(x) = 1

γ
, for some γ > 0. (1.2.7)

(A2) Let kn ∈ N be an intermediate sequence with

kn →∞ and kn/n→ 0, n→∞.

Then the estimators Γ̂12 and Γ̂21 are consistent, as n→∞, i.e.,

Γ̂12
P−→ Γ12 and Γ̂21

P−→ Γ21.

Remark 1.1. The von Mises’ condition in (A1) is a very mild assumption that is satisfied
by most univariate regularly varying distributions of interest. In our case γ = 1/α, where
α is the common tail index of the noise variables. /

For a proof of Theorem 1.4 see Appendix A.2.3. It uses several results from tail
empirical process theory (e.g., de Haan and Ferreira, 2006, Sec. 2.2). The main challenge
comes from the fact that the variables X1 and X2 are tail dependent, and that the use
of the empirical distribution function F̂2 in (1.2.6) introduces dependence between the
terms corresponding to different observations i = 1, . . . , n. A related problem is studied
in Cai et al. (2015), where they derive asymptotic properties of the empirical estimator of
the expected shortfall when another dependent variable is extreme. However, in contrast
to Cai et al. (2015), in the proof of Theorem 1.4, we work with a more explicit model and
we consider the variables scaled to uniform margins, i.e., F̂j(Xj) instead of Xj, j = 1, 2.
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1.3 Causal discovery using extremes
We would like to recover the causal information from a dataset of p variables under the
model specification of Section 1.2.1. We develop an algorithm named extremal ancestral
search (EASE) based on the causal tail coefficient defined in (1.2.1). We show that EASE
can recover the causal order of the underlying graph in the population case (Section 1.3.1),
and that it is consistent (Section 1.3.2).

1.3.1 Learning the causal order
Our goal is to recover the causal order of a heavy-tailed linear SCM over p variables (as
defined in Section 1.2.1) by observing n i.i.d. copies of the random vector X ∈ Rp. Given
a DAG G = (V,E), a permutation π : {1, . . . , p} → {1, . . . , p} is said to be a causal
order (or topological order) of G if π(i) < π(j) for all i and j such that i ∈ an(j,G). We
denote by ΠG the set of all causal orders of G. For a permutation π we sometimes use
the notation π =

(
π(1), . . . , π(p)

)
.

A given causal order π does not specify a unique DAG. As an example, the causal
order π = (1, 2) comprises two DAGs: one where there is a directed edge between node 1
and node 2, and one where the two nodes are unconnected. On the other hand, there can
be several causal orders for a given DAG. For example, a fully-disconnected DAG satisfies
any causal order. However, even if the causal order does not identify a unique DAG, it
still conveys important information. In particular, each causal order defines a class of
DAGs that agree with respect to the non-ancestral relations. Therefore, once a causal
order is available, one can estimate the complete DAG by using regularised regression
methods. This idea has been exploited, e.g., by Shimizu et al. (2011) and Bühlmann
et al. (2014). In addition, Bühlmann et al. (2014) and Peters and Bühlmann (2015) argue
that knowledge of a causal order is useful per se. In fact, given a correct causal order, one
can construct a fully-connected DAG that describes interventional distribution across the
variables.

For any heavy-tailed linear SCM and induced DAG G = (V,E), we define the matrix
Γ ∈ Rp×p with entries Γij, the causal tail coefficients between all pairs of variables Xi

and Xj, i, j ∈ V ; see Definition 1.1. Theorem 1.3 tells us how the entries of Γ encode
the causal relationships between the random variables of the SCM. To recover the causal
order of the DAG G, we propose Algorithm 1, named extremal ancestral search (EASE).

Algorithm 1 is a greedy algorithm that identifies root nodes of the current subgraph
at each step. In the first step, the algorithm finds a root node i1 ∈ V as the one that
minimises the score M (1)

i = maxj 6=i Γji, i ∈ V . In fact, by Theorem 1.3, M (1)
i < 1 if and

only if i is a source node. Once the first node is selected, the algorithm searches for a
second root node in the subgraph where i1 is removed. The procedure continues until all
nodes have been selected. In Appendix A.3, one example illustrates how EASE finds a
causal order for a given DAG.

The next result states that, in the population case, the EASE algorithm yields a
correct causal order of the underlying DAG.

Proposition 1.5. Consider a heavy-tailed linear SCM over p variables, as defined in
Section 1.2.1, and let G = (V,E) be the induced DAG. If the input Γ is the matrix of
causal tail coefficients associated with the SCM, then EASE returns a permutation π that
is a causal order of G.

For a proof see Appendix A.2.4.
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Algorithm 1 Extremal ancestral search (EASE)
Input: A matrix Γ ∈ Rp×p of causal tail coefficients related to a DAG G = (V,E) with
V = {1, . . . , p}.
Returns: Permutation of the nodes π : V → {1, . . . , p}.

0. Set V1 = V .

1. For s ∈ {1, . . . , p}

(a) Let M (s)
i = maxj∈Vs\{i} Γji, for all i ∈ Vs.

(b) Let is ∈ arg mini∈Vs M
(s)
i .

(c) Set π(is) = s.
(d) Set Vs+1 = Vs \ {is}.

2. Return the permutation π.

Complexity: O(p2).

1.3.2 Sample properties for the EASE algorithm
For finite samples, the EASE algorithm will take an estimate of the causal coefficient
matrix Γ as input. Based on the empirical non-parametric estimator Γ̂ and its asymptotic
properties, we assess the performance of the algorithm. Let Γ̂ ∈ Rp×p denote the matrix
where each entry Γ̂ij is defined as in (1.2.6) in Section 1.2.3, for i, j ∈ V . We say that a
procedure makes a mistake when it returns a permutation π /∈ ΠG. We derive an upper
bound for the probability that EASE makes a mistake when the matrix Γ is estimated by
Γ̂.

Proposition 1.6. Consider a heavy-tailed linear SCM over p variables X = (X1, . . . , Xp),
as defined in Section 1.2.1, with induced DAG G. Let Γ̂ be the estimated causal coefficient
matrix related to G. Let π̂ denote the permutation returned by EASE based on Γ̂. Then,

P
(
π̂ /∈ ΠG

)
≤ p2 max

i,j∈V :i 6=j
P
(∣∣∣Γ̂ij − Γij

∣∣∣ > 1− η
2

)
,

where η = maxu/∈An(v,G) Γuv < 1.

For a proof see Appendix A.2.5. The bound for the probability of making a mistake in
the estimated causal order is expressed in terms of the distance between the true Γij and
the estimated Γ̂ij. This bound in combination with the consistency result of Theorem 1.4
yields the consistency of the EASE algorithm in the sample case.

Corollary 1.7. Let π̂ be the permutation computed by EASE under the assumptions of
Proposition 1.6. Let kn ∈ N be an intermediate sequence with

kn →∞ and kn/n→ 0, n→∞.

If the von Mises’ condition (1.2.7) holds, then the EASE algorithm is consistent, i.e.,

P
(
π̂ /∈ ΠG

)
→ 0, as n→∞.
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The result above is for fixed dimension p. To prove consistency in a regime where p
scales with the sample size n we would need to establish concentration inequalities for Γ̂
or asymptotic normality in Theorem 1.4. Both would require stronger assumptions on the
tails of the noise variables and a second-order analysis in line with the proof of Theorem
1.4.

1.3.3 Computational complexity
The EASE algorithm is based on pairwise quantities and is therefore computationally
efficient. To estimate the matrix Γ̂ of causal tail coefficients, which is the input for EASE,
first, we need to rank the n observations for each of the variables, with a computational
complexity of O(pn log n). Then we compute the coefficients Γ̂ij for each pair i, j ∈ V ,
with a computational complexity of O(knp2). The computational complexity of EASE
grows with the square of the number of variables, i.e., O(p2). The overall computational
complexity of estimating the matrix Γ̂ and running the EASE algorithm is therefore
O
(
max(pn log n, knp2)

)
.

1.4 Extensions

1.4.1 Real-valued coefficients
Until now, we have worked with a heavy-tailed linear SCM with positive coefficients (see
Section 1.2.1 for a detailed explanation of the model). In the current section, we relax
this assumption and let the coefficients of the SCM be real-valued, i.e., βjk ∈ R, j, k ∈ V .
Additionally, we assume that βj→k is non-zero, if j is an ancestor of k. Given that the
coefficients are real-valued, we want to consider both the upper and the lower tails of the
variables. We assume that the noise variables ε1, . . . , εp, of the SCM have comparable
upper and lower tails, that is, as x→∞

P(εj > x) ∼ c+
j `(x)x−α, P(εj < −x) ∼ c−j `(x)x−α,

where c+
j , c

−
j > 0, j ∈ V and ` ∈ RV0. Furthermore, we define a causal tail coefficient

that is sensitive to both tails as

Ψjk = lim
u→1−

E
[
σ(Fk(Xk)) | σ(Fj(Xj)) > u

]
, j, k ∈ V, (1.4.1)

if the limit exists, where σ : x 7→ |2x − 1|. The nonlinear transformation x 7→ σ(x),
x ∈ [0, 1], makes the Ψjk coefficient in (1.4.1) sensitive to both large positive and negative
values of Xk, conditional on the event that Xj takes large positive or negative values.
Since Fj(Xj) ∼ Unif[0, 1], j ∈ V , we can rewrite (1.4.1) as

Ψjk = lim
u→1−

1
2E

[
σ(Fk(Xk)) | Fj(Xj) > u

]
+ lim

u→0+

1
2E

[
σ(Fk(Xk)) | Fj(Xj) < u

]
= Ψ+

jk + Ψ−jk,

(1.4.2)

where the first and second terms correspond to the cases where Xj is extremely large and
extremely small, respectively.

In the current setting, the coefficient defined in (1.4.1) always exists, and it has a
closed form expression that encodes causal relationships between the variables.
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Lemma 1.8. Consider a heavy-tailed SCM over p variables, where the coefficient βjk ∈ R,
j, k ∈ V . Assume that βj→k 6= 0 if j is an ancestor of k. Then, for j, k ∈ V and j 6= k,

Ψjk = 1
2 + 1

4

∑
h∈Ajk

c+
hj|βh→j|α∑

h∈An(j,G) c
+
hj|βh→j|α

+ 1
4

∑
h∈Ajk

c−hj|βh→j|α∑
h∈An(j,G) c

−
hj|βh→j|α

,

where Ajk = An(j,G) ∩ An(k,G), and

c+
hj =

c
+
h , βh→j > 0,
c−h , βh→j < 0,

c−hj =

c
−
h , βh→j > 0,
c+
h , βh→j < 0.

(1.4.3)

A proof is provided in Appendix A.2.6. The interpretation of the result is as follows.
The baseline of the coefficient is 1/2, which can be checked to be the value of Ψjk when
two variables are independent. The other two terms account for the equally weighted
contribution from the lower and upper tail, respectively. The result stated in Lemma 1.8
allows us to extend Theorem 1.3 to the more general setting where the heavy-tailed SCM
has coefficients βjk ∈ R, j, k ∈ V .

Theorem 1.9. Consider a heavy-tailed linear SCM over p variables including X1 and X2,
and assume that βjk ∈ R, j, k ∈ V . In addition, assume that βj→k 6= 0 if j is an ancestor
of k. Then, knowledge of Ψ12 and Ψ21 allows us to distinguish the following cases: (a) X1
causes X2, (b) X2 causes X1, (c) there is no causal link between X1 and X2, (d) there is a
node j 6∈ {1, 2}, such that Xj is a common cause of X1 and X2 and neither X1 causes X2
nor X2 causes X1. The corresponding values for Ψ12 and Ψ21 are shown in Table 1.4.1.

Table 1.4.1: Summary of the possible values of Ψ12 and Ψ21 and the implications for
causality.

Ψ21 = 1 Ψ21 ∈ (1/2, 1) Ψ21 = 1/2
Ψ12 = 1 (a) X1 causes X2
Ψ12 ∈ (1/2, 1) (b) X2 causes X1 (d) common cause
Ψ12 = 1/2 (c) no causal link

The proof is identical to the proof of Theorem 1.3, replacing Γij with Ψij and by
referring to Lemma 1.8 instead of Lemma 1.2. Moreover, as in Theorem 1.3, condition (a)
and (b) can also include the presence of a common cause Xj. Theorem 1.9 implies that if
we run the EASE algorithm based on the matrix Ψ ∈ Rp×p, containing the pairwise Ψij,
i, j ∈ V , then we retrieve a causal order of the underlying DAG. This is the analogue to
Proposition 1.5 for heavy-tailed linear SCM with real-valued coefficients.

We define an empirical estimator Ψ̂ij of Ψij in a similar fashion as the estimator Γ̂ij
in (1.2.6). The proof of Lemma 1.8 shows that the coefficient Ψij can be decomposed in
the same way as Γij in the proof of Lemma 1.2. Therefore, following the lines of the proof
of Theorem 1.4 with some minor modifications, we obtain the consistency Ψ̂ij

P−→ Ψij as
n→∞ for any intermediate sequence kn →∞ and kn/n→ 0, and under the assumption
of the von Mises’ condition for both the upper and the lower tail of Xj, j ∈ V .

We can then estimate a permutation π̂ by the EASE algorithm based on the matrix
Ψ̂ ∈ Rp×p that contains the estimators Ψ̂ij, i, j ∈ V , as entries. For this permutation
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we obtain the same bound for the probability that EASE makes a mistake as shown in
Proposition 1.6 by replacing Γ̂ij and Γij by Ψ̂ij and Ψij, respectively. This together with
the consistency of Ψ̂ij yields the following result.

Corollary 1.10. Assume the general setup of the heavy-tailed linear SCM with real-valued
coefficients of this section. Let π̂ be the permutation computed by EASE based on the
matrix Ψ̂. Assume the von Mises’ condition for the upper and the lower tail of Xj and let
kn ∈ N be an intermediate sequence with

kn →∞ and kn/n→ 0, n→∞.

Then, the EASE algorithm is consistent, i.e.,

P
(
π̂ /∈ ΠG

)
→ 0, as n→∞.

1.4.2 Presence of hidden confounders
A frequent assumption in causality is that one can observe all the relevant variables.
However, in many real-world situations, it is hard, if not impossible, to do so. When
some of the hidden variables are confounders (i.e., common causes), the causal inference
process might be compromised. Therefore, an attractive property of a causal inference
algorithm involves its robustness to hidden confounders. In this section, we show that
EASE is capable of dealing with hidden common causes and, under certain assumptions,
it recovers the causal order of the observed graph both in the population and in the
asymptotic case.

Consider a heavy-tailed linear SCM with real-valued coefficients, as defined in Sec-
tion 1.4.1, consisting of both observed and hidden variables. This SCM induces a DAG
G = (V,E), with V = VO ∪ VH , VO ∩ VH = ∅, where VO (VH) denotes the set of nodes
corresponding to the observed (hidden) variables. Our goal is to recover a causal order
for the subset of the observed variables Xj, j ∈ VO. In particular, we say that the EASE
algorithm recovers a causal order π over the observed variables if

π(i) < π(j) =⇒ j /∈ an(i, G), for all i, j ∈ VO. (1.4.4)

In fact, the results of the previous sections hold even in the presence of hidden confounders.
Regarding the population properties, Theorem 1.3 and 1.9 still apply: they state

that the causal tail coefficients Γ and Ψ reflect the causal relationships between pairs of
variables without taking into account other variables, e.g., by conditioning. In addition,
the result of Proposition 1.5, and the corresponding extension in Section 1.4.1, are also
valid. The proof of Proposition 1.5 depends only on the assumption that the input matrix
contains the pairwise causal effects between the variables. Therefore, if we use matrix Γ
(or Ψ) as input for the EASE algorithm, we recover a causal order π that satisfies (1.4.4).

Regarding the asymptotic properties, Γ̂ and Ψ̂ are consistent even in the presence of
hidden common causes: in the proof of Theorem 1.4, the other variables do not appear.
In addition, we can still find an upper bound for the probability that the EASE algorithm
makes a mistake. To do so, one needs to adjust the proof of Proposition 1.6 by replacing
the full DAG G with the subgraph GO = (VO, EO) containing only the observed variables,
where EO = E ∩ (VO × VO). Combining the two previous arguments, it follows that
Corollary 1.7 and 1.10 hold even in the presence of hidden confounders.
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The ability to deal with hidden confounders is a property that, in general, is not shared
by all methods in causality. For example, the PC algorithm (Spirtes et al., 2000, Sec. 5.4.2)
might retrieve a Markov equivalence class that contains DAGs with a wrong causal order
if some of the variables are not included in the analysis. Similarly, the standard version of
the LiNGAM algorithm (Shimizu et al., 2006) might produce a wrong DAG in the presence
of hidden common causes. Hoyer et al. (2008), Entner and Hoyer (2010), and Tashiro et al.
(2014) proposed extensions of LiNGAM that deal with hidden variables. While Entner
and Hoyer (2010), and Tashiro et al. (2014) show good performance in practice, all three
methods suffer from some drawbacks. For example, the LiNGAM version of Hoyer et al.
(2008) requires a priori the number of hidden variables in the SCM (or needs to estimate
it from data). The main limitation of Entner and Hoyer (2010) is that it recovers causal
information only for subsets of variables that are not affected by hidden confounders.
For some non-ancestral graphs, the method by Tashiro et al. (2014) does not identify all
ancestral relationships (Wang and Drton, 2020). In addition, both the work of Hoyer et al.
(2008) and Tashiro et al. (2014) are computationally intensive, with the latter showing
a computational time that grows exponentially with the sample size and the number of
observed variables. Among the constraint-based methods, Spirtes et al. (2000, Sec. 6.7)
proposed the FCI method, which is an extension to the PC algorithm that deals with
arbitrarily many hidden confounders and produces a partial ancestral graph (see Zhang,
2008). Due to the high number of independence tests, the FCI algorithm can be slow
when the number of variables is large. For this reason, Claassen et al. (2013) proposed
the FCI+ algorithm, a faster version of FCI that is consistent in sparse high-dimensional
settings with arbitrarily many hidden variables. In general, FCI type algorithms produce
an equivalence class of graphs. They are not guaranteed to recover the causal order of
the variables.

Compared to the methods mentioned above, our algorithm has the advantage of being
computationally fast, and being able to produce a causal order without assumptions on
the number of hidden variables and the sparsity of the true underlying DAG.

1.4.3 Noise variables with different tails
We have so far considered the case where the noise variables of a given SCM share the
same tail coefficient α > 0 and the same slowly varying function `. Consider now a heavy-
tailed SCM over p variables, as defined in Section 1.2.1, with the difference that the noise
variables have possibly different tail indices α1, . . . , αp > 0 and slowly varying functions
`1, . . . , `p ∈ RV0, i.e., for j = 1, . . . , p,

P(εj > x) ∼ `j(x)x−αj , x→∞.

We say that εj has heavier (upper) tail than εk if either 0 < αj < αk, or αj = αk and
`j(x)/`k(x)→∞ as x→∞. Denote by G = (V,E) the DAG induced by the SCM. With
similar arguments to the proof of Lemma 1.2, the causal tail coefficient for j, k ∈ V can
then be expressed as

Γjk = 1
2 + 1

2 lim
x→∞

∑
h∈Ajk

βαh
h→jP(εh > x)∑

h∈An(j,G) β
αh
h→jP(εh > x) , (1.4.5)

where Ajk = An(j, G) ∩ An(k,G), and the sum over an empty index set equals zero.
From (1.4.5), we can study the different constellations of Xj and Xk and the corresponding
values of Γjk. We obtain the following three statements.
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1. If Xj and Xk are independent, the causal tail coefficient satisfies, as before, Γjk =
1/2.

2. If Xj is an ancestor of Xk then, as before, Γjk = 1.

3. In all other scenarios, it holds that Γjk < 1 as long as the noise variables εh, h ∈ Ajk,
of the common ancestors of Xj and Xk have tails that are lighter than (or as light
as) the one of εj. On the other hand, if there is some common ancestor of Xj and
Xk for which the noise variable’s tail is heavier than the one of εj, then Γjk = 1.

These statements help to understand in which cases the values of Γjk indicate a correct
causal relation.

Example 1.2. Suppose that Xj is an ancestor of Xk, and there is possibly a common
ancestor X0 (which can also be a hidden confounder). Since Γjk = 1, we will never
mistakenly detect the existence of a causal effect from Xk to Xj. If either Xj or X0 has
a heavier tail than Xk, then Γkj = 1 and we cannot detect the causal effect from Xj to
Xk. /

Example 1.3. Suppose neither Xj causes Xk nor Xk causes Xj, and X0 is a common
ancestor of Xj and Xk. If X0 has a tail that is lighter than (or as light as) the one of Xk,
but heavier than the one of Xj, then Γjk = 1 > Γkj. Therefore, the causal tail coefficient
indicates a wrong causal effect from Xj to Xk. /

Whenever there exists a causal effect between two variables, we can, at worst, fail
to detect it (that is, the causal tail coefficient does not indicate a causal effect in the
wrong direction). When there is no causal connection between two variables, the causal
tail coefficient might indicate a wrong causal effect. However, this does not affect the
correctness of the EASE algorithm, on the population level. Indeed, if Γjk = 1 > Γkj,
for j, k ∈ V , there are two possibilities. If Xj is an ancestor of Xk, then the algorithm
correctly chooses j before k. If Xj and Xk share a common ancestor, but none of them is
causing the other (see Example 1.3), then any permutation of j and k yields a valid causal
order. Example 1.2 shows that EASE could make mistakes when Xj is an ancestor of Xk

and Γjk = Γkj = 1, since the causal tail coefficient does not indicate any causal effect. In
this case, one could remove one variable at a time to obtain a subset Ṽ ⊂ V that satisfies
Γhm < 1 or Γmh < 1 for each h,m ∈ Ṽ . By applying the EASE algorithm to the subset
of the remaining variables, one would recover a correct causal order on such subset.

For simplicity we only considered the causal tail coefficient Γ, but similar conclusions
hold for Ψ.

1.5 Numerical results

1.5.1 Simulation study
We assess the performance of EASE in estimating a causal order of a graph induced by
a heavy-tailed SCM. We simulate the SCMs with real-valued coefficients and different
numbers of variables p and samples n. The noise variables have Student’s t distributions
with different degrees of freedom α and we consider four different settings, including
unobserved confounders and model misspecification; see Appendix A.4 for details. Since
the coefficients in the SCM are real-valued, we use the causal tail coefficient Ψ defined
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in Section 1.4.1 for our EASE algorithm. Our code is available as an R package at
https://github.com/nicolagnecco/causalXtreme. Scripts generating all our figures and
results can be found at the same url.

Competing methods and evaluation metric We compare our algorithm to three
well-established methods in causality, the Rank PC algorithm (Harris and Drton, 2013),
ICA-LiNGAM (Shimizu et al., 2006), and Pairwise LiNGAM (Hyvärinen and Smith,
2013).

The classic PC algorithm (Spirtes et al., 2000, Sec. 5.4.2) belongs to the class of
constraint-based methods for causal discovery. It estimates the Markov equivalence class
of a DAG, encoded as a completed partially directed acyclic graph (CPDAG). The PC
algorithm retrieves a CPDAG by performing conditional independence tests on the vari-
ables. The Rank PC algorithm, proposed by Harris and Drton (2013), is an extension of
the PC algorithm and uses the rank-based Spearman correlation to perform the indepen-
dence tests. This modification ensures that the method is more robust to non-Gaussian
data.

The algorithms that fit our problem best are ICA-LiNGAM and Pairwise LiNGAM.
ICA-LiNGAM, proposed by Shimizu et al. (2006), leverages the results of independent
component analysis (ICA) (Comon, 1994) to estimate the DAG of a linear SCM un-
der the only assumption that the noise is non-Gaussian. Pairwise LiNGAM, proposed
by Hyvärinen and Smith (2013), is a likelihood-ratio-based method to identify the ex-
ogenous variables within the DirectLiNGAM framework. DirectLiNGAM, introduced
by Shimizu et al. (2011), is an algorithm based on two iterative steps, namely, finding an
exogenous variable (i.e., a node in the DAG with no parents), and regressing this vari-
able out of all the others. In this simulation study, we let ICA-LiNGAM and Pairwise
LiNGAM return only a causal order (and not a complete DAG structure), in order to
make a fair comparison with EASE.

The algorithms return different types of causal information. On the one hand, EASE,
ICA-LiNGAM, and Pairwise LiNGAM estimate a causal order. On the other hand, the
Rank PC algorithm computes a CPDAG that represents a Markov equivalence class of
DAGs. Therefore, when it comes to evaluating the performance of the algorithms, it
becomes crucial to use a measure that is meaningful for all of them. We choose the
structural intervention distance (SID) proposed by Peters and Bühlmann (2015). The
SID takes as input either a pair of DAGs or a DAG and a CPDAG and returns the number
of falsely inferred interventional distributions (Peters and Bühlmann, 2015, Definition 3).
We standardise the SID to lie between zero and one. For each method, we compute the
distance between the simulated DAG, i.e., the ground truth, and the estimated DAG or
CPDAG. An estimated causal order π̂ corresponds to a fully connected DAG G = (V,E),
where (i, j) ∈ E if π̂(i) < π̂(j). As a caveat, we slightly adapt the SID in the case of
hidden confounders (see Setting 2 of our simulations), since it is not designed to work in
such a situation.

Results In this simulation experiment we use the implementation of the Rank PC, and
ICA-LiNGAM algorithm developed by Kalisch et al. (2012). We implemented Pairwise
LiNGAM in C++ and included it in our software package.

Regarding the hyperparameter settings, for the Rank PC algorithm, we perform a
conditional independence test based on Spearman’s correlation coefficient, as proposed
by Harris and Drton (2013), and we set the level of the independence tests to 0.0005.

https://github.com/nicolagnecco/causalXtreme
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Concerning the choice of the number of exceedances kn in the EASE algorithm, we
perform a small preliminary simulation. Figure A.3 shows the SID of EASE for kn = bnνc
and different fractional exponents ν > 0. The best fractional exponent in Figure A.3
seems to depend on the tail heaviness of the noise variables, and in particular it appears
to be smaller for larger values of the degree of freedom α of the Student’s t distribution.
Our estimators Γ̂ij and Ψ̂ij are similar in construction to Hill’s estimator (Hill, 1975). For
the latter, the optimal number k∗n of exceedances depends on the tail index and an index
related to a second-order condition; see Section 3.2 in de Haan and Ferreira (2006) for
details. For the Student’s t distribution with α degrees of freedom it can be shown that
k∗n ∼ Cαn

1/(α+1), where Cα > 0 is a constant. This intuitive explanation coincides well
with the optimal fractional exponents in Figure A.3. In the sequel, we choose kn = bn0.4c
because it lies within the best range for the fractional exponent. This result also agrees
with the assumptions of Theorem 1.4, where kn →∞ and kn/n→ 0, as n→∞.

Regarding the simulation settings, we let n denote the number of observations, p the
number of variables, and α > 0 the tail index of the simulated distribution. For each
combination of n ∈ {500, 1000, 10000}, p ∈ {4, 7, 10, 15, 20, 30, 50} and α ∈ {1.5, 2.5, 3.5}
we simulate 50 random SCMs under four different settings. The simulated data is inde-
pendent of the data used to choose the best fractional exponent of kn (see Figure A.3).
The first setting corresponds to linear SCMs with real-valued coefficients described in
Section 1.4.1. In the second setting, we introduce hidden confounders. The third setting
corresponds to nonlinear SCMs. In the fourth setting, we first generate linear SCMs and
then transform each variable to uniform margins. Further details on the generation of the
SCMs are in Appendix A.4. For each simulation and setting we evaluate the performance
of EASE, ICA-LiNGAM, Pairwise LiNGAM, and Rank PC algorithm with the SID. As
a baseline, in each simulation, we also compute the SID of a randomly generated DAG,
where we randomly choose the causal order, the sparsity and the edges of the graph.

Figure 1.3 displays the results of the simulations when the tail index α = 1.5. We
can observe that EASE is quite robust across the four different settings. We explain
this finding as follows. In the presence of hidden confounders (Setting 2), EASE can
retrieve a correct causal order, asymptotically. Furthermore, the nonlinear setting used
in this simulation (Setting 3) is such that the relationships between the variables are kept
linear in the tails. Therefore, our algorithm is only moderately affected by this model
misspecification. Finally, EASE is not affected by the transformation to uniform margins
(Setting 4) because the causal tail coefficient Ψ is invariant under any strictly monotone
increasing transformation.

Compared to the other methods, we observe that EASE performs better than Rank PC
across all settings, and better than ICA-LiNGAM in Setting 2 and 4. Pairwise LiNGAM
is overall the best performing method, except in Setting 4. Also, Pairwise LiNGAM is
less affected by misspecifications in the bulk of the data distribution (Setting 3), com-
pared to ICA-LiNGAM. One reason is that Pairwise LiNGAM relies on ordinary least
square regression that is sensitive to high-leverage points. In this particular setting, ICA-
LiNGAM and Pairwise LiNGAM gain in robustness if we discard the data in the bulk of
the distribution; see Table A.5.1 in Appendix A.5. Furthermore, both ICA-LiNGAM and
Pairwise LiNGAM are the algorithms with the best convergence for high dimension p, as
n increases. This result is not surprising because EASE uses only the kn < n upper order
statistics to recover the causal structure. In addition, we notice that Pairwise LiNGAM
outperforms ICA-LiNGAM, in agreement to the findings of Hyvärinen and Smith (2013).
Regarding the Rank PC algorithm, we can see that it is quite stable under different set-
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tings, but it performs only marginally better than the random method. Moreover, in
Figure A.10 in Appendix A.5, we observe that the performance of the Rank PC algo-
rithm is almost constant for significance levels of the independence test between 5 · 10−4

and 0.5. The results do not change when we consider the standard PC algorithm, which
is based on partial correlation as a conditional independence test. The results for tail
indices α = 2.5, 3.5 are in Figures A.6 and A.7 in Appendix A.5. Increasing values of α
correspond to lighter tails, and we observe that it becomes more challenging for EASE
to recover the correct causal order. In the extreme case where alpha→∞, the variables
are asymptotically independent and the causal tail coefficient does not identify the causal
direction anymore; this leads the EASE algorithm to fail in recovering a valid causal order.

In addition to the competitive performance in the simulations, a further advantage
of EASE is its computational efficiency. The algorithm performs computations only on
the tails of the dataset and relies on simple non-parametric estimators of the causal tail
coefficient; see Section 1.3.3. Figure A.9 in Appendix A.5 shows that EASE can be up to
two orders of magnitude faster than the other methods.

1.5.2 Financial application
In general, one cannot easily reason about causality in financial markets. Several factors
influence financial returns, and most of them are unobserved. In addition, the effect
of these factors varies in time. However, under particular circumstances, it is possible
to conjecture the existence of a specific causal relationship, with a reasonable degree of
confidence. For example, in the Swiss financial market, one can argue that very large (both
positive and negative) changes to the Euro Swiss franc exchange rate (EURCHF) induce
changes in the Swiss Market Index (SMI), the main stock index in Switzerland. This is
due to multiple reasons such as the multinational nature and the high export dependency
of the Swiss economy. Consider, for instance, the decision of the Swiss National Bank
(SNB) to discontinue the minimum exchange rate between Swiss franc and Euro, on
January 15, 2015. This event can be deemed as a large intervention with a plausible
causal interpretation (in the spirit of Cox and Wermuth (1996, Sec. 8.7)). Following the
SNB decision, the EURCHF plummeted more than 30 standard deviations, and all the
stocks included in the SMI dropped in value on the same day.

For this reason, we consider the returns of the Euro Swiss franc exchange rate (EU-
RCHF) and the three largest Swiss stocks in terms of market capitalisation, namely,
Nestlé (NESN), Novartis (NOVN) and Roche (ROG). We choose to analyse three indi-
vidual stocks instead of the SMI for three reasons. First, we deem it more appropriate
to test our assumptions on more than two variables. Moreover, the three stocks make up
50% of the SMI composition, and thus they are representative of the index itself. Further-
more, all three companies are multinational corporations with a homogeneous exposure
to foreign markets and a negligible fraction of revenues coming from the Swiss market
(see Nestlé, 2019; Novartis, 2019; Roche, 2019). The last point suggests that the effect (if
any) of EURCHF on these stocks does not depend on the idiosyncrasies of each firm.

The dataset consists of daily returns spanning from January 2005 to September 2019
and includes n = 3832 observations. The goal is to assess whether EASE can retrieve
a correct causal order for the set of four variables. As ground truth, we conjecture that
large changes in EURCHF (both positive and negative) will cause large changes in the
stock returns, but not vice versa. Figure 1.4 shows the causal structure corresponding to
our hypothesis.
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Figure 1.3: The figure refers to Section 1.5.1. It shows the SID averaged over 50 simu-
lations, for each method, setting, sample size n and dimension p, when the tail index is
α = 1.5. Each row of the figure corresponds to one setting. In order, the settings are:
(1) Linear SCM; (2) Linear SCM with hidden confounders; (3) Nonlinear SCM; (4) Linear
SCM where each variable is transformed to a uniform margin.

EURCHF

ROGNESN NOVN

Figure 1.4: A DAG representing a plausible causal structure among the daily returns of
Euro Swiss franc exchange rate (EURCHF), Nestlé (NESN), Novartis (NOVN) and Roche
(ROG).

Before running the EASE algorithm, we assess the tail behaviour of each variable by
estimating the shape parameter ξ of a generalised Pareto distribution (see Embrechts
et al., 1997, Sec. 3.4) on the threshold data. Recall that ξ is the reciprocal of the tail
index α = 1/ξ, if ξ > 0. For each variable and each tail (upper and lower) we estimate the
ξ parameter using 200 observations, corresponding to the 95%-quantile, approximately.
The estimated parameters and their standard errors for the upper tails are 0.31 (0.08)
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for EURCHF, 0.25 (0.08) for NESN, 0.16 (0.07) for NOVN, and 0.25 (0.09) for ROG.
Regarding the lower tail, the estimated parameters and their standard errors are 0.27
(0.08) for EURCHF, 0.12 (0.08) for NESN, 0.17 (0.08) for NOVN, and 0.23 (0.10) for
ROG. By adding and subtracting two standard errors from each point estimate of ξ, we
observe that the lower shape parameter of Nestlé and Novartis is not significantly different
from zero. Moreover, the shape parameters for the Euro Swiss franc exchange rate and for
Roche are significantly different from zero in both tails. In addition, since the confidence
intervals of all estimates are overlapping, the assumption of a common shape parameter
seems reasonable. It seems however that the returns of Nestlé and Novartis have slightly
lighter tails compared to the other two variables.

With the goal of recovering a causal order with EASE, first we estimate the Ψ̂ matrix
from the full dataset, by setting the number of exceedances to k = 10 (this corresponds
to bn0.3c, approximately). We run the EASE algorithm on the matrix Ψ̂, and we obtain
the causal order π̂−1 = (EURCHF, NOVN, ROG, NESN); this agrees with the proposed
ground truth of Figure 1.4. As a comparison, also ICA-LiNGAM and Pairwise LiNGAM
recover a causal order that agrees with our hypothesis.

Since our results are based on the k = 10 upper order statistic, we assess the variability
of the estimates Ψ̂ for different values of kn = bnνc, with ν ∈ [0.2, 0.7]. Figure A.5
shows the estimated coefficients Ψ̂ for the pairs (EURCHF, NESN), (EURCHF, NOVN),
and (EURCHF, ROGN), with the corresponding 90% bootstrap confidence intervals. In
the three plots, the black (blue) line corresponds to the estimated coefficient Ψ̂EURCHF,i

(Ψ̂i,EURCHF), with i = NESN, NOVN, ROG. We can interpret the difference between the
black and blue lines as a causal signal, since Ψij − Ψji > 0 if variable i causes variable
j, for i, j ∈ V (see Section 1.4.1). For the pairs (EURCHF, NESN) and (EURCHF,
NOVN) the blue and the black lines overlap for all values of the upper order statistic
k, and therefore any possible causal effect is not identified by the estimated coefficient
Ψ̂. This result agrees with Example 1.2 of Section 1.4.3 which shows that the causal tail
coefficients do not identify a causal signal when the ancestor has a heavier tail than its
descendant — as is the case for the pairs (EURCHF, NESN) and (EURCHF, NOVN).
In contrast, if we consider the pair (EURCHF, ROGN) we notice that the difference
Ψ̂EURCHF,ROGN − Ψ̂ROGN,EURCHF is positive for all fractional exponents ν ≤ 0.4. This can
be explained by the fact that EURCHF and ROGN have comparable tail indices, and
therefore it is easier for the coefficient Ψ to detect a possible causal effect between the
variables. In Appendix A.6, we show the dynamic evolution of the Ψ̂ coefficient across
time.

Given the highly complex nature of financial markets, we do not take the conclusion of
this experiment as a definite answer but rather consider it as an indication for a possible
causal relationship in this data.

1.5.3 River data
We apply the EASE algorithm to the average daily discharges of the rivers located in the
upper Danube basin. This dataset has been studied in Asadi et al. (2015), Engelke and
Hitz (2020) and Mhalla et al. (2020), and it is made available by the Bavarian Environ-
mental Agency (http://www.gkd.bayern.de). We consider average daily discharges for 12
stations along the basin, representing the different tributaries and different sections of the
Danube, and 11 of them are a subset of the 31 stations selected by Asadi et al. (2015).
We exclude some of the 31 stations that are spatially very close since those are highly

http://www.gkd.bayern.de
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dependent and almost indistinguishable. For convenience, we name the stations with the
same numbers used in Asadi et al. (2015). While Asadi et al. (2015) decluster the data
prior to their analysis in order to obtain independent samples, we use all observations
despite the possible temporal dependence. In fact, for extreme value copulas, Zou et al.
(2021) show that the use of a larger but possibly dependent dataset can decrease the
asymptotic estimation error. Moreover, Fawcett and Walshaw (2007) argue that consid-
ering all exceedances over a high threshold reduces the bias of the maximum likelihood
estimators compared to a declustered analysis. To account for the time dependence of the
exceedances, they adjust the standard errors using methods presented by Smith (1990).
In this experiment, we compute the standard errors according to the adjustment proposed
by Fawcett and Walshaw (2007).

The dataset spans from 1960 to 2009, where we consider only the summer months,
i.e., June, July, and August. The rationale is that most of the extreme observations occur
in summer due to heavy rainfall. The final dataset contains n = 4600 observations. The
rivers have an average volume that ranges between 20 m3/s (for the upstream rivers) and
1400 m3/s (for the downstream rivers). A map of the basin can be seen in Figure A.8 in
Appendix A.5. In order to implement our method, we first assess whether the equal tail
index assumption is satisfied. To do so, we consider a regional model similar to the one
presented by Asadi et al. (2015). We split the stations into four separate regions. Region
1 contains three stations in the southwest of the upper Danube basin and the catchment
areas are located at mid-altitude; region 2 includes three stations in the Inn-Salzach
basin whose tributaries are located in high-altitude alpine regions; region 3 contains four
stations along the main Danube with large average water volume; region 4 comprises
two stations in the north of the Danube. For each region, we fit a Poisson point process
likelihood (Coles, 2001, Chap. 7) by considering exceedances over the 90% quantile and
by constraining the shape parameter ξ to be equal across the stations within the same
region. To address the presence of temporal dependence in the exceedances, we adjust the
standard errors as shown by Fawcett and Walshaw (2007) and, based on these, we compute
approximate confidence intervals. For each region, the estimated shape parameter and
the corresponding confidence intervals are 0.167 (0.062, 0.273), 0.145 (0.047, 0.242), 0.133
(0.027, 0.239) and 0.229 (0.099, 0.358), respectively. The fact that the confidence intervals
overlap suggests that our assumption of equal tail index across the variables is satisfied.
Moreover, all confidence intervals do not include the zero value, and therefore the data
can be deemed to be heavy-tailed.

We perform two separate analyses to identify causal structures both in space and time.
Regarding the spatial structure, the goal is to recover the causal order of the network flow
of the 12 stations on the rivers. We consider observations that occur on the same day
because the 12 stations are at most 200 km apart from each other and the water flows at
ten kilometer per hour, on average. Recovering the causal order of the spatial network
is a non-trivial task for two reasons. First, the water discharges at the stations can be
confounded by rainfall that spreads out across the region of interest. Second, the large
difference in water volume between the stations can further mask the causal structure
of the water flow. The true DAG of the spatial disposition of the stations is shown in
Figure 1.5. We run the EASE algorithm based on the Γ coefficient, considering the upper
tails, and setting the number of exceedances to k = 29 = bn0.4c. The estimated causal
order π̂−1 = (23, 32, 26, 28, 19, 21, 11, 9, 7, 14, 13, 1) is correct, and the corresponding
fully connected DAG has an SID equal to 0. We also run ICA-LiNGAM and Pairwise
LiNGAM on the same dataset, and we obtain an SID of 0 and 0.053, respectively. Clearly,
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in this example, the causal structure in the bulk of the distribution is the same as in the
extremes. To assess the variability of our results, we compute the average SID of EASE

11 21 19
14

32
13

28

9 7 1
23 26

Figure 1.5: DAG representing the spatial configuration of the stations across the upper
Danube basin.

over 50 bootstrap samples, for different values of the threshold parameter k = bnνc,
ν ∈ [0.2, 0.7] — see Figure A.4. From this figure, we observe that the fractional exponent
ν ≈ 0.4 yields a good performance both in terms of SID and variability. The value for
the optimal fractional exponent agrees with the empirical findings of Section 1.5.1.

Concerning the time-series analysis, we consider each station individually and try to
recover the direction of time from the lagged data. Consider an autoregressive (AR)
process of order p ≥ 1,

Xt =
p∑
j=1

βjXt−j + εt, t ≥ 0,

where the εt are regularly varying with comparable tails, and βj satisfies the classical
stationarity condition for AR processes, j = 1, . . . , p (see Brockwell and Davis, 2002,
Chapter 3.1, equation (3.1.4)). For a detailed discussion of such time series models we
refer to Basrak and Segers (2009) and Embrechts et al. (1997, Chapter 7). Peters et al.
(2009) prove that an AR(p) process is time reversible, i.e., can be represented by an AR(p)
process in the reversed time direction, if and only if the noise is Gaussian. This means
that for heavy-tailed random variables, one can in principle detect the direction of time
from the data. For each station, we construct a dataset D where the rows correspond to
different days and the columns to different lags. We denote by X0, X1, . . . , X6 the columns
containing the current and lagged values of the station discharge. We then run EASE on
the dataset D and recover a causal order π̂ over the seven variables X0, . . . , X6. We say
that the direction of time is correctly inferred if the estimated causal order places the lags
in the correct position, i.e., π̂(j) < π̂(i) if j < i, for i, j = 0, . . . , 6. EASE successfully
recovers the direction of time for 11 out of the 12 stations. As a comparison, ICA-
LiNGAM, and Pairwise LiNGAM find the correct order for 9 and 11 stations, respectively.

So far, we have not considered a multivariate time series analysis of the dataset. On
the one hand, in this particular application of the river data, the effects among the stations
are almost instantaneous — due to the closeness of the water catchment areas, the fact
that we have daily values and the river speed, which is about ten kilometres per hour.
On the other hand, time information usually helps in estimating causal relations. For
this reason, we apply multivariate Granger causality (Granger, 1969) to the river data,
considering one day lag. For each pair of stations (i, j), we say that i Granger-causes j if
the corresponding p-value is significant at a 0.05 level, after the Bonferroni correction. We
sort the significant p-values in ascending order, and we sequentially add the directed edge
(i, j) if nodes i and j are not connected. We continue until the skeleton of the resulting
graph is connected, or all the p-values have been selected. The resulting directed tree
achieves an SID of 0.083. Alternatively, if we sequentially add directed edges (i, j) that
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do not create cycles (until all p-values have been selected) we obtain a DAG with an SID
of 0.196.

1.6 Discussion and future work
In several real-world phenomena, the causal mechanisms between the variables appear
more clearly during extreme events. Moreover, there are situations where the causal
relationship in the bulk of the distribution differs from the structure in the tails. We
have introduced an algorithm, named extremal ancestral search (EASE), that is shown
to consistently recover the causal order of a DAG from extreme observations only. EASE
has the advantage of relying on the pairwise causal tail coefficient, and therefore it is
computationally efficient. In addition, our algorithm can deal with the presence of hidden
confounders and performs well for small sample sizes and high dimensions. The EASE
algorithm is robust to model misspecifications, such as nonlinear relationships in the bulk
of the distribution, and strictly monotone increasing transformations applied marginally
to each variable.

This work sheds light on a connection between causality and extremes, and thereby
opens new directions of research. In particular, it might be interesting to study the
properties of the causal tail coefficient under more general conditions. This includes high-
dimensional settings where the dimension grows with the sample size, more general SCMs
where the functional relations between the variables can be nonlinear, and settings where
the noise variables have lighter tails. For example, in future research, one could combine
EASE with regression techniques to obtain the complete DAG structure, compute the
residuals and then test them for the assumption of common tail indices.

Another possible extension may consider multivariate time series data, where the tem-
poral order of cause and effect could help to estimate causal relationships among variables,
see, e.g., Granger (1969). Future work might study how to combine our approach with the
Granger causality framework. For instance, one could first perform a Granger causality
analysis, and then, apply EASE to the residuals of the vector autoregression model. For
a careful study in this direction, it would also be necessary to investigate the statistical
properties of the residuals.
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Chapter 2

Extremal Random Forests
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Abstract

Classical methods for quantile regression fail in cases where the quantile of
interest is extreme and only few or no training data points exceed it. Asymp-
totic results from extreme value theory can be used to extrapolate beyond
the range of the data, and several approaches exist that use linear regression,
kernel methods or generalized additive models. Most of these methods break
down if the predictor space has more than a few dimensions or if the regression
function of extreme quantiles is complex. We propose a method for extreme
quantile regression that combines the flexibility of random forests with the
theory of extrapolation. Our extremal random forest (ERF) estimates the
parameters of a generalized Pareto distribution, conditional on the predictor
vector, by maximizing a local likelihood with weights extracted from a quan-
tile random forest. Under certain assumptions, we show consistency of the
estimated parameters. Furthermore, we penalize the shape parameter in this
likelihood to regularize its variability in the predictor space. Simulation stud-
ies show that our ERF outperforms both classical quantile regression methods
and existing regression approaches from extreme value theory. We apply our
methodology to extreme quantile prediction for U.S. wage data.

Keywords: extreme quantiles, local likelihood estimation, quantile regression, ran-
dom forests, threshold exceedances.

2.1 Introduction
Quantile regression is a well-established technique to model statistical quantities that go
beyond the conditional expectation that is used for standard regression analysis (Koenker
and Bassett, 1978). This is particularly valuable in applications such as economics, sur-
vival analysis, medicine, and finance (Angrist et al., 2006; Yang, 1999; Heagerty and Pepe,
1999; Taylor, 1999; Yu et al., 2003), where one needs to model the heteroschedasticity of
the response or conditional quantiles such as the median.

In this paper, we consider the problem of estimating high conditional quantiles of a
response variable Y ∈ R given a set of predictors X ∈ Rp in large, but fixed, dimensions,
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an important task in risk assessment for rare events (Chernozhukov, 2005). For a fixed
predictor value x, define Qx(τ) as the quantile at level τ ∈ (0, 1) of the conditional
distribution of Y | X = x. We are interested in the estimation of extreme quantiles
where τ ≈ 1 is close to one. This estimation problem exhibits two fundamental challenges
that are illustrated in Figure 2.1, which shows a simulation similar to Athey et al. (2019,
Figure 2). The predictor space has p = 40 dimensions and only the first variable X1 has
a signal corresponding to a scale shift in Y ; see Example 2.1 in Section 2.3.1 for details.

The first challenge in estimating Qx(τ) relates to the fact that for an extreme proba-
bility level, say τ = 0.9995 as in Figure 2.1, there are typically only few or no observations
in the sample that exceed the corresponding conditional τ -quantiles. Indeed, for a sample
of size n, the expected number of exceedances above the conditional τ -quantile is n(1−τ),
which becomes smaller than one if τ > 1− 1/n. Therefore, using an empirical estimator
based on quantile loss leads to a large bias. A second challenge stems from the possibly
large, while fixed, dimension of the predictor space Rp, where there might be no training
observations close to x; note that the Figure 2.1 only shows the first of the 40 dimensions
of X. Too simple regression models may then introduce additional bias.

The first challenge can be addressed by relying on tail approximations motivated by
extreme value theory (e.g., de Haan and Ferreira, 2006), which allow the extrapolation to
quantile levels beyond the range of the data. Such methods typically consider (transfor-
mations of) linear (Chernozhukov, 2005; Wang and Tsai, 2009; Wang et al., 2012; Wang
and Li, 2013) functions, additive models (Chavez-Demoulin and Davison, 2005; Young-
man, 2019), non-parametric regression (Beirlant et al., 2004; Martins-Filho et al., 2015)
and local smoothing methods (Daouia et al., 2011; Gardes and Stupfler, 2019; Velthoen
et al., 2019). However, these existing approaches are either not flexible enough to model
complex response surfaces or do not scale well in higher dimensions p of the predictor
space.

Regarding the second challenge, several quantile regression methods have been pro-
posed in the statistical and machine learning literature that can cope with large, while
fixed, dimensions of the predictor space and complex regression surfaces (Taylor, 2000;
Friedman, 2001b). In particular, there exist several forest-based approaches for quantile
regression (Meinshausen, 2006; Athey et al., 2019). These methods are based on (ex-
tensions of) the random forest originally developed by Breiman (2001) and can estimate
flexible quantile regression functions. Compared to methods such as gradient boosting
and neural networks, the main advantage of forest-based approaches is that they require
little tuning and that their statistical properties are relatively well understood (Athey
et al., 2019). Moreover, they scale well with the dimension of the predictor space as
opposed to approaches based on generalized additive models (Koenker, 2011) and kernel-
based methods (Yu and Jones, 1998). While these methods work well for estimation of
quantiles inside the data range, such as τ0 = 0.8 in Figure 2.1, their performance deteri-
orates for quantile estimation at extreme levels τ ≈ 1 close to the upper endpoint of the
response distribution.

In this paper, we bring together ideas from extreme value theory and forest-based
regression methods to tackle the challenges of extreme quantile regression in predictor
spaces with possibly large, but fixed, dimensions p. To extrapolate beyond the data
range, we rely on the approximation by the generalized Pareto distribution (GPD) of
the exceedances over an intermediate threshold; see the triangles in Figure 2.1. Under
mild assumptions, the conditional quantile of Y , given X = x, at level τ ≈ 1 can the be
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approximated by (Balkema and de Haan, 1974; Pickands, 1975)

Qx(τ) ≈ Qx(τ0) + σ(x)
ξ(x)

( 1− τ
1− τ0

)−ξ(x)

− 1
 , (2.1.1)

where Qx(τ0) is an intermediate quantile at level τ0 < τ and the second term on the right-
hand side is quantile function of the GPD indexed by the conditional scale σ(x) > 0 and
shape parameter ξ(x) ∈ R. This includes responses with heavy tails (ξ(x) > 0), light tails
(ξ(x) = 0) and with finite upper end points (ξ(x) < 0). The intermediate quantile level
τ0 is chosen small enough such that the conditional quantiles Qx(τ0) can be estimated by
classical regression methods. At the same time, it should be large enough so that the
approximation in (2.1.1) by the GPD is accurate.

In order to cope with complex response surfaces and large-dimensional predictor
spaces, we rely on ideas from the random forest literature (Meinshausen, 2006; Athey
et al., 2019). Our new extremal random forest (ERF) localizes the estimation of the GPD
parameter vector θ(x) = (σ(x), ξ(x)) around the predictor value x using forest-based
weights. Since only few extreme observations are typically available for training, the sim-
ple tuning of random forests turns out to be of great advantage. Under certain conditions,
we show consistency of the ERF estimator θ̂(x) for the true conditional parameter vector
θ(x). Since our loss function, namely the GPD log-likelihood, is non-convex, the proof
strategy of Athey et al. (2019) cannot be used, and we rely on the theory of Newey (1991).

Our ERF algorithm combines the advantages of accurate tail extrapolation at levels
τ ≈ 1 with a flexible regression method that scales well with predictor dimension. In
simulations, we show that ERF outperforms extreme value theory and quantile regression
methods to estimate extreme quantiles. Moreover, it is competitive with the recent gradi-
ent boosting by Velthoen et al. (2021) and has the advantage of significantly easier tuning
and the theoretical guarantee of our consistency result. Finally, we apply our methodol-
ogy to extreme quantile prediction for U.S. wage data (Angrist et al., 2009). The ERF
algorithm is available as an R package on https://github.com/nicolagnecco/erf.

2.2 Background

2.2.1 Extreme Value Theory
The first challenge of extreme quantile regression is that only a few or even no data points
exceed the quantiles of interest. This section considers the classical case of unconditional
extremes without predictors. Let Y1, . . . , Yn be n independent copies of a real-valued
random variable Y . The notion of an extreme quantile τ = τn is typically expressed
relative to the sample size n. The expected number of observations in the sample that
exceed the τn-quantile is then n(1−τn). A quantile with level τn → 1 such that n(1−τn)→
∞ is called an intermediate quantile. Empirical estimation in this case still works well
since the effective sample size, that is, the number of exceedances, grows to infinity
(de Haan and Ferreira, 2006). For risk assessment, the most critical case is if the quantile
of interest is eventually beyond the range of the data, that is, (1− τn)n→ 0 as n→∞.
Then, we can no longer rely on empirical estimators but must resort to asymptotically
motivated approximations from extreme value theory.

Let u∗ ∈ (0,∞] be the upper endpoint of the distribution of Y . Under mild regularity
assumptions on the tail of Y , the Pickands–Balkema–De Haan theorem (Balkema and

https://github.com/nicolagnecco/erf
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Figure 2.1: Realization of n = 2000 samples from the generative model in Example 2.1 in
Section 2.3.1. Response Y is plotted against the first predictor X1. Dashed lines represent
the quantile functions associated to the intermediate τ0 = 0.8 and high τ = 1 − 1/n =
0.9995 quantile levels. Triangles are observations above the intermediate threshold.

de Haan, 1974; Pickands, 1975) states that there exists a normalizing function σ(u) > 0
such that

lim
u→u∗

P
(
Y − u
σ(u) ≤ z | Y > u

)
= G(z; (1, ξ)), (2.2.1)

where the limit on the right-hand side is the distribution function of the generalized Pareto
distribution (GPD) (Pickands, 1975) given by

G(z; θ) = 1−
(

1 + ξ

σ
z

)−1/ξ

+
, z > 0, (2.2.2)

and θ = (σ, ξ) ∈ (0,∞) × R is the parameter vector consisting of scale and shape,
respectively. The shape parameter ξ ∈ R, also known as the extreme value index (Beirlant
et al., 2005), characterizes the decay of the tail of Y . If ξ > 0, then Y is heavy-tailed;
if ξ = 0, then Y is light-tailed; if ξ < 0 then Y has a finite upper endpoint. Moreover,
the GPD is a natural model for the distribution tails since it is the only possible limit of
threshold exceedances as in (2.2.1).

The GPD approximation can be directly translated into an approximation for the
small probability of Y exceeding a high threshold y. By Bayes’ theorem and (2.2.1) we
obtain

P(Y > y) = P(Y > u) P(Y > y | Y > u) ≈ P(Y > u)
{
1−G(y − u;σ, ξ)

}
,

where u < y denotes an intermediate threshold. Combining this approximation with (2.2.2)
and letting P(Y > y) = 1− τ and P(Y > u) = 1− τ0, we obtain an approximation for the
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τ -quantile of Y as

Q(τ) ≈ Q(τ0) + σ

ξ

( 1− τ
1− τ0

)−ξ
− 1

 , (2.2.3)

where Q(τ0) := F−1
Y (τ0) denotes the intermediate quantile at level τ0 < τ .

In applications, the scale and shape parameters of the GPD have to be estimated from
independent observations Y1, . . . , Yn of Y . We fix an intermediate quantile level τ0 and
define the exceedances Zi = (Yi−Q̂(τ0))+, i = 1, . . . , n, where Q̂(τ0) denotes the empirical
τ0 quantile. We can estimate the GPD parameter vector θ by maximum-likelihood, where
the negative log-likelihood (or deviance) contribution of the ith exceedance Zi is

`θ(Zi) = log σ +
(

1 + 1
ξ

)
log

(
1 + ξ

σ
Zi

)
, θ ∈ (0,∞)× R, (2.2.4)

if Zi > 0, and zero otherwise.

2.2.2 Quantile Regression and Generalized Random Forests
Given a pair (X, Y ) of predictor vector X ∈ Rp and response variable Y ∈ R, quantile
regression deals with modeling the conditional τ -quantile Qx(τ) of the conditional distri-
bution of Y given that X = x for a particular predictor value x ∈ Rp. The main challenge
is that the dimension p of the predictor space may be large, while fixed, and that the
quantile surface Qx(τ) as a function x may be a complex, highly non-linear function.

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of the random vector (X, Y ). In
contrast to the setting in Section 2.2.1, classical methods for quantile regression consider a
fixed quantile level τ ≡ τn that does not change with the sample size. On population level,
these methods exploit the fact that the conditional quantile function is the minimizer of
the expectation of the quantile loss ρτ (c) = c(τ−1{c < 0}), c ∈ R, (Koenker and Bassett,
1978), that is,

Qx(τ) = arg min
q∈R

E[ρτ (Y − q) | X = x]. (2.2.5)

The above expectation cannot be estimated directly on the sample level since the set of
observed predictor values does not typically include the value x. A natural estimator is

Q̂x(τ) = arg min
q∈R

n∑
i=1

wn(x,Xi)ρτ (Yi − q), (2.2.6)

where x′ 7→ wn(x, x′) is a set of localizing similarity weights around the predictor value of
interest. The weights can for instance be obtained by a kernel approach (Yu and Jones,
1998), but this is limited to moderately large dimensions (Stone, 1980, 1982).

In order to model more complex quantile surfaces in larger dimensions, Meinshausen
(2006) and Athey et al. (2019) propose to use the estimator (2.2.6) with similarity weights
wn(·, ·) obtained from a random forest. Random forests (Breiman, 2001) are an ensemble
method used for both regression and classification tasks and consist of fitting B decision
trees to the training data. In regression settings, each decision tree predicts a test point
x ∈ Rp by

µb(x) :=
n∑
i=1

1{Xi ∈ Lb(x)}Yi
|{i : Xi ∈ Lb(x)}| , b = 1, . . . , B,
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where Lb(x) ⊂ Rp denotes the rectangular region that x belongs to in bth tree. By defining
the similarity weights wn,b(x,Xi) := 1{Xi ∈ Lb(x)}/|{i : Xi ∈ Lb(x)}|, the random forest
predictions can be written as

µ(x) := 1
B

B∑
b=1

µb(x) =
n∑
i=1

wn(x,Xi)Yi,

where wn(x,Xi) = ∑B
b=1wn,b(x,Xi)/B is the average weight across B trees.

The original idea of Meinshausen (2006) is to use the weights estimated by this
standard regression random forest for quantile regression in (2.2.6). A drawback of
this approach is that the similarity weights arise from decision trees that are grown
by minimizing the mean squared error loss. This leads to the fact that, as stated
in Meinshausen (2006), wn(x,Xi) takes large values for those observations i such that
E[Y | X = Xi] ≈ E[Y | X = x]. In many situations the conditional expectation is not
representative of the whole conditional distribution of Y | X = x, and it may happen that
wn(x,Xi) is large but QXi

(τ) 6≈ Qx(τ); see Athey et al. (2019, Figure 2) or our Figure 2.1
where the conditional expectation is constant over the predictor space. In these cases,
the similarity weights estimated with standard random forest do not capture the hetero-
geneity of the quantile function and are thus not well-suited for quantile regression tasks.
Athey et al. (2019) introduced generalized random forests (GRF), a method designed to
fit random forests with custom loss functions. The GRF retains all the appealing features
of classical random forests, i.e., it is simple to fit and requires little tuning of hyperpa-
rameters. One of the main applications of GRF is quantile regression, where the trees
of the forest are grown to minimize the quantile loss function. In this work, we rely on
GRF with quantile loss to estimate similarity weights wn(·, ·) that capture the variation
of the entire conditional distribution of Y | X = x in the predictor space. In practice, the
GRF algorithm estimates simultaneously conditional quantiles at levels τ = 0.1, 0.5, 0.9
as a proxy for the conditional distribution of Y | X = x. For simplicity, in the sequel, we
refer to GRF with quantile loss as GRF.

2.3 Extremal Random Forest

2.3.1 The Algorithm
In this work we study a method for flexible extreme quantile regression where both chal-
lenges described in Sections 2.2.1 and 2.2.2 occur simulateneously. Consider the random
vector (X, Y ) of predictors X ∈ X ⊂ Rp and response Y ∈ R, with X compact. Let
(X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y ). In many applications in risk as-
sessment, the goal is to estimate the quantile function x 7→ Qx(τ) = F−1

Y |X=x(τ), at an
extreme level τ = τn, where the expected number of observations in the sample that
exceed their conditional quantiles is small and possibly tends to 0 as n → ∞; see Sec-
tion 2.2.1. To illustrate the challenges of this estimation problem, we consider an example
where the scale of the response variable Y is modeled as a step function of the covariates
X. This corresponds to Athey et al. (2019, Figure 2), except that we assume that the
noise of the response variable is heavy-tailed instead of Gaussian.

Example 2.1. Let X ∼ Up be a uniform distribution on the cube [−1, 1]p in dimension
p and Y | X = x ∼ s(x) T4, where Tν denotes a Student’s t-distribution with ν > 0
degrees of freedom. The shape parameter of the conditional distribution Y | X = x is
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then constant ξ(x) = 1/ν(x) ≡ 0.25 and we choose the s(x) = 1 + 1{x1 > 0} for x ∈ Rp.
The GPD scale parameter σ(x) of Y | X = x and therefore also the quantile function
Qx(τ) only depend on X1. The other predictors are noise variables. /

Figure 2.1 in the introduction shows n = 2000 observations sampled from the model
of Example 2.1 in dimension p = 40. The goal is to predict the conditional quantile Qx(τ)
for a high level of τ , e.g., τ = 0.9995. We observe that the difficulty of the task is twofold.
First, because of a possibly large-dimensional, while fixed, predictor space, there might be
no training observations close to x; note that we only show the first of the 40 dimensions
of X in the figure. Second, the τ -quantile might be out of the range of the data if τ is very
close to one. Indeed, for a sample of size n, the expected number of exceedances above
the conditional τ -quantile is n(1− τ), which becomes smaller than one if τ > 1− 1/n.

Our methodology accurately addresses both of these challenges. For effective localizing
in the predictor space, even in large dimensions, we use the weights emerging from GRF
(Athey et al., 2019). For correct extrapolation in the tail of the conditional response
variable, we rely on the asymptotic theory of extremes and fit a localized generalized
Pareto distribution; see Section 2.2.1. More precisely, for an intermediate quantile level
τ0, we assume that the distribution function of Y − Qx(τ0), conditional on Y > Qx(τ0),
is approximately generalized Pareto (Balkema and de Haan, 1974) with scale and shape
parameters depending on the predictor value x, that is, for any z > 0,

P
(
Y −Qx(τ0) ≤ z | Y > Qx(τ0), X = x

)
≈ G

(
z; θ(x)

)
, (2.3.1)

where θ(x) = (σ(x), ξ(x)), and the scale and shape are continuous functions σ : X →
(0,∞) and ξ : X → R, respectively. This assumption is a conditional version of (2.2.1)
and means that the GPD approximation holds for the distribution of Y | X = x for any
x ∈ X . It is satisfied by most data generating processes as for instance in Example 2.1.

In order to formulate our estimators of the conditional GPD parameters θ(x) and the
extreme quantile Qx(τ), we define the exceedances in the training data as

Zi := (Yi − Q̂Xi
(τ0))+, i = 1, . . . , n; (2.3.2)

see the triangles in Figure 2.1. Here, τ0 ∈ (0, 1) is an intermediate probability level
that is chosen such that the estimator Q̂x(τ0) of the conditional quantile function can
be obtained by classical quantile regression techniques; see Section 2.2.2. In principle,
any quantile regression method can be used to fit Qx(τ0). Here, we choose GRF with
quantile loss (Athey et al., 2019) since it is a flexible method well-suited for large, but
fixed, dimensional quantile regression problems and it requires little tuning.

For the estimation of the GPD parameter vector θ(x) = (σ(x), ξ(x)) we rely on those
exceedances that carry most information on the tail of the distribution of Y | X = x.
To do so, we use the localizing weight functions wn(x,Xi) estimated from a GRF (Athey
et al., 2019) that may be different from the one used to estimate the intermediate quantile
Q̂x(τ0). We would like to define the estimator of the conditional GPD parameter θ̂(x) as
the minimizer of the weighted (negative) log-likelihood

Ln(θ;x) =
n∑
i=1

wn(x,Xi)`θ(Zi)1{Zi > 0}, x ∈ X , (2.3.3)

where `θ is defined in (2.2.4). In practice, the parameter space θ(X ) = {ϑ ∈ (0,∞) ×
R : ϑ = θ(x) for some x ∈ X} is unknown. As explained by Dombry (2015), it is not
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guaranteed that the log-likelihood of the generalized extreme value distribution has a
global optimum over the parameter space (0,∞) × R. In fact, Smith (1985) shows that
there exists no maximum likelihood estimator when ξ ≤ −1. Analogous results apply
to the GPD log-likelihood Ln(θ;x) (Drees et al., 2004). We therefore follow Bücher and
Segers (2017) and define θ̂(x) as the optimizer of Ln(θ;x) over an arbitrarily large compact
set Θ ⊂ (0,∞)× (−1,∞) such that θ(X ) ⊂ Int Θ, that is,

θ̂(x) = arg min
θ∈Θ

Ln(θ;x). (2.3.4)

If there is more than one minimizer, let θ̂(x) be the smallest with respect to lexicographic
order (see Dombry, 2015). The estimated pair (Q̂x(τ0), θ̂(x)) of intermediate quantile and
conditional GPD parameters can be plugged into the extrapolation formula (2.1.1) to
obtain an estimate Q̂x(τ) of the extreme conditional quantile at level τ > τ0.

In Algorithm 2, we describe our prediction method, which we call the extremal random
forest (ERF). The algorithm consists of two subroutines, namely ERF-Fit and ERF-
Predict. The first one estimates a similarity weight function (x, y) 7→ wn(x, y) and an
intermediate quantile function x 7→ Q̂x(τ0) from the training data, for x, y ∈ X . The
second procedure predicts the extreme τ -quantile Q̂x(τ0) at point x ∈ X by estimating
the GPD parameter vector θ(x) as in (2.3.4). Appendix B.3 shows the estimated GRF

Algorithm 2 Extremal random forest (ERF)
Denote by D = {(Xi, Yi)}ni=1 the training data. Let x ∈ Rp be a test predictor value.
Specify intermediate and extreme quantile levels τ0 and τ , respectively, with τ0 < τ . Let
α be a vector of hyperparameters supplied to GRF.

1: procedure ERF-Fit(D, τ0, α)
2: wn(·, ·)← GRF(D, α) . Fit similarity weight function.
3: Q̂·(τ0)← QuantileRegression(D) . Fit intermediate quantile func-

tion.
4: output erf ← [D, wn(·, ·), Q̂·(τ0)] . Return an erf object.
1: procedure ERF-Predict(erf, x, τ)
2: Zi ← (Yi − Q̂Xi

(τ0))+, with i = 1, . . . , n . Compute exceedances.
3: θ̂(x)← arg minθ Ln(θ;x) as in (2.3.3) . Estimate GPD parameters.
4: output Q̂x(τ) as in (2.1.1) . Return extreme quantile.

The subroutine GRF estimates the similarity weight function wn(·, ·) using the general-
ized random forest of Athey et al. (2019). The subroutine QuantileRegression fits
the intermediate conditional quantile function Q̂·(τ0) using a classical quantile regression
technique. The object erf is a list containing the training data D, the fitted intermediate
quantile Q̂·(τ0), and the estimated similarity weight function wn(·, ·).

weights wn(x,Xi) used in the likelihood in (2.3.3) for Example 2.1 and specific values
of x. It can be seen that the weights are large for training observations Xi where the
distribution of Y | X = Xi is equal to the one of Y | X = x.

2.3.2 Consistency
Our ERF provides an estimate θ̂(x) = (σ̂(x), ξ̂(x)) of the conditional GPD parameter θ(x)
that describes the tail of the distribution of Y | X = x. The method is at the interface of
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random forests and extreme value theory, and both fields have their challenges related to
the analysis of asymptotic properties.

Consistency and asymptotic normality of classical (Meinshausen, 2006; Biau, 2012;
Scornet et al., 2015; Wager and Athey, 2018) and generalized random forests (Athey
et al., 2019) have only recently been established. The results by Athey et al. (2019) require
regularity conditions (see Assumptions 1–6 of their paper) that are not satisfied in our
setting. In particular, the negative GPD log-likelihood θ 7→ `θ(z) that we consider is not
a convex function and, therefore, it does not satisfy Assumption 6 in Athey et al. (2019).
On the other hand, the asymptotic analysis of extreme value estimators is notoriously
difficult due to the pre-limit approximation in (2.3.1) and changing distributional support
(Smith, 1985; Drees et al., 2004). Recent papers have worked out the asymptotics for the
unconditional i.i.d. case (Dombry, 2015; Bücher and Segers, 2017; Dombry and Ferreira,
2019).

We will not show consistency of the ERF under the most general conditions on the
distributional tail of Y | X = x since the required technicalities would be beyond the
scope of this paper. We list all assumptions needed for our theorem and discuss possible
relaxations after the statement. The first assumption deals with the data generating
process.

Assumption 2.1. Let X ∈ X have a density that is bounded away from 0 and ∞
and support X := [0, 1]p. For large enough τ0, suppose the conditional intermediate
quantile function QX(τ0) is known. Furthermore, assume that the distribution function
of Y −QX(τ0), conditional on Y > QX(τ0), is exactly generalized Pareto with parameter
vector θ(X).

The next assumption addresses how the parameter vector θ(x) depends on the predic-
tor X = x. We consider only the most relevant case of positive shape parameter ξ(x) > 0,
that is, where Y | X = x is heavy-tailed.

Assumption 2.2. Let θ(x) = (σ(x), ξ(x)) denote the bivariate regression function for
the GPD parameters, for x ∈ X . Assume σ : X → (0,∞) and ξ : X → (0,∞) are
continuous functions on X . Furthermore, assume their first order partial derivatives are
continuous in the interior and exist on the boundary of X ; we refer to Appendix B.2
for a definition of partial derivative on the boundary. Notice that the parameter space
θ(X ) ⊂ (0,∞)× (0,∞) is compact and bounded away from the origin.

Let (X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y ). The first step of our al-
gorithm consists of fitting a generalized random forest on the training data to obtain
similarity weights. To show consistency, we make the following standard assumptions on
how this forest is built.

Assumption 2.3. Let wn(x, y) denote the similarity weights for x, y ∈ X estimated by a
GRF. We assume the forest satisfies Specification 1 of Athey et al. (2019). In particular, we
assume that each tree in the forest is symmetric, places balanced splits, and is randomized
(see Athey et al., 2019). We require that each tree is fitted on a subsample of the training
data with size s < n, such that s → ∞ and s/n → 0 as n → ∞, and that the forest
consists of

(
n
s

)
trees fitted on all possible subsamples of size s.

In practice, one builds a forest by estimating B trees. Our theoretical results hold
for forests made of

(
n
s

)
trees fitted on all possible subsamples of size s. For this reason,
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similarly to Wager and Athey (2018), we assume that B is large enough so that the Monte
Carlo effect is negligible. Furthermore, Assumption 2.3 does not require that the trees in
the forest are honest in the sense of Athey et al. (2019). The reason is that, as opposed
to Athey et al. (2019), our conditional response distribution belongs to the parametric
GPD family. In practice, we find that honesty helps our algorithm perform better, and
the result below remains true under this additional, stronger assumption.

Theorem 2.4. Let (X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y ) as specified in
Assumptions 2.1 and 2.2. Let x ∈ Int X be a fixed test predictor value, and denote by
wn(x,Xi) the similarity weights estimated with a forest satisfying Assumption 2.3. Let
Θ ⊂ (0,∞) × (0,∞) be an arbitrary compact set such that θ(X ) ⊂ Int(Θ), and let θ̂(x)
denote a sequence of estimators minimizing (2.3.3). Then, θ̂(x) → θ(x) in probability as
n→∞.

The proof relies on the theory of Newey (1991) and is in Appendix B.1. To the best of
our knowledge, this is the first consistency proof for a tree-based extreme quantile regres-
sion method. Wang and Tsai (2009) show asymptotic normality for the model parameters
for the heavy-tailed case, but only in the situation where the covariate dependence is
linear. There are no asymptotic results for models for generalized Pareto distributions
with parameters depending in a more complex way on the covariates such as through gen-
eralized additive models (Chavez-Demoulin and Davison, 2005; Youngman, 2019), trees
(Farkas et al., 2020) or gradient boosting (Velthoen et al., 2021).

Similarly to Wang and Tsai (2009), we focus on the heavy-tailed case where ξ(x) > 0
for all x ∈ X . Relaxing this assumption to ξ(x) ∈ R would make the support of the
generalized Pareto distribution depend on the model parameters. This would require a
different proof strategy and additional care in terms of Lipschitz conditions, but some
ideas from the i.i.d. case in Bücher and Segers (2017, Lemma E.2) might be helpful.

A further simplification in our setup is that we assume that the approximation in
(2.3.1) is an equality. Dropping this assumption would require additional conditions to
control the approximation error and would add a further level of technicality to the proofs.
Similar assumptions are often made in the literature as for instance in Bücher and Segers
(2017) for the i.i.d. case for generalized extreme value distributions.

2.3.3 Hyperparameter Tuning
Generalized random forests have several tuning parameters, such as the number of pre-
dictors selected at each split and the minimum node size. This section presents a cross-
validation scheme to tune such hyperparameters within our algorithm. For large values of
τ ≈ 1, the quantile loss is not a reliable scoring function since there might be few or no test
observations above this level. In our case, we can instead rely on the tail approximation
in (2.3.1) and use the deviance of the GPD as a reasonable metric for cross-validation.
Let N1, . . . ,NM be a random partitioning of {1, . . . , n} into M equally sized folds of the
training data. For a sequence α1, . . . , αJ of tuning parameters, we fit an erf object on the
training set (Xi, Yi), i /∈ Nm, for each αj and each fold m as described in the ERF-Fit
function in Algorithm 2. Given the fitted erf object, we estimate the GPD parameter
vector θ̂(Xi;αj) on the validation set (Xi, Yi), i ∈ Nm as in the ERF-Predict function
in Algorithm 2, and evaluate the cross-validation error by

CV (αj) =
M∑
m=1

∑
i∈Nm

`θ̂(Xi;αj)(Zi)1{Zi > 0},
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Figure 2.2: Solid line shows the square root of the MISE of ERF for different minimum
node sizes κ over 50 simulations. The dashed line shows the square root MISE of the
cross-validated ERF. The data is generated according to Example 2.1.

where θ 7→ `θ(z) is the deviance of the GPD and Zi := (Yi−Q̂Xi
(τ0))+ are the exceedances.

Finally, we select the optimal tuning parameter α∗ as the minimizer of CV (αj), j =
1, . . . , J . To make the problem computationally tractable, we first fit the intermediate
quantile function x 7→ Q̂x(τ0) on the entire data set. Then, on each fold, we estimate the
similarity weight function (x, y) 7→ wn(x, y) with “small” forests made of 50 trees. We
repeat the cross-validation scheme several times to reduce the variability of the results.

Even though, in principle, one could perform cross-validation on several tuning pa-
rameters, we find that the minimum node size κ ∈ N plays the most critical role for ERF.
The reason is that κ controls the model complexity of the individual trees in the forest
and consequently of the similarity weights wn(·, ·). Small (large) values of κ correspond to
trees with few (many) observations in each leaf and produce strongly (weakly) localized
weight functions wn(·, ·). The estimates of the shape parameter ξ̂(x) in (2.3.4) may be sen-
sitive to small changes of the localizing weights in the covariate space, leading to unstable
quantile predictions through (2.1.1). To reduce the variance of ξ̂(x), it is useful to stabilize
the log-likelihood x 7→ Ln(θ;x) by estimating the similarity weights wn(·, ·) with a forest
made of trees with relatively large leaves. Notice that wn(x, y) influences the effective
number of observations used in the weighted (negative) log-likelihood Ln(θ;x) (2.3.3).

Figure 2.2 shows numerical results of cross-validating the minimum node size κ for
the model described in Example 2.1. Here, we perform 5-fold cross-validation repeated
three times by growing forests of 50 trees on each fold. We measure the performance as
the square root of the mean integrated squared error (MISE) between the estimated and
the true quantile function over 50 simulations; see Section 2.4 for the definition of the
MISE. We observe that the cross-validated performance of ERF (dashed line) is close to
the minimum square root MISE, suggesting that the proposed cross-validation scheme
works well.

2.3.4 Penalized Log-Likelihood
The shape ξ of the GPD is the most crucial parameter since it determines the tail behavior
of Y at extreme quantile levels; the extrapolation formula (2.2.3) shows the highly non-
linear influence of the shape parameter on large quantiles.

Estimation of the shape parameter is notoriously challenging, and the maximization
of the GPD likelihood may exhibit convergence problems for small sample sizes (Coles



40 Chapter 2. Extremal Random Forests

and Dixon, 1999). In general, penalization can help to reduce the variance of an estimator
at the cost of higher bias (Hastie et al., 2009). Coles and Dixon (1999) propose a penalty
function that restricts the shape parameter values to ξ < 1 and favors smaller values of
ξ. Several penalization schemes can be interpreted in a Bayesian sense by considering
a prior distribution on the regularized parameter. For example, de Zea Bermudez and
Turkman (2003) introduce a Bayesian approach to estimate the ξ by using different priors
for the cases ξ > 0 and ξ < 0, respectively. In the context of the generalized extreme
value distribution, other penalization methods have been proposed by Smith and Naylor
(1987).

While the above regularization methods are tailored to i.i.d. data, in our setting we
want to penalize the variation of the shape function x 7→ ξ(x) across the predictor space X .
In spatial applications, for instance, it is common to assume a constant shape parameter
at different locations (e.g., Ferreira et al., 2012; Engelke et al., 2019). Similarly, in ERF we
shrink the estimates ξ̂(x) to a constant shape parameter ξ0. In general, ξ0 can be given
by expert knowledge, but often a good choice is the unconditional fit ξ0 = ξ̂ obtained
by minimizing the GPD deviance in (2.3.3) with constant weights wn(x, y) = 1 for all
x, y ∈ X .

We propose to penalize the weighted GPD deviance (2.3.3) with the squared distance
between the estimates of ξ(x) and the constant shape parameter ξ0, that is,

θ̂(x) = arg min
(σ,ξ)=θ∈Θ

1
(1− τ0)Ln(θ;x) + λ(ξ − ξ0)2, (2.3.5)

where λ ≥ 0 is a tuning parameter, and τ0 is the intermediate quantile level. The param-
eter λ allows interpolating between a simpler model with a constant shape when λ→∞,
and a more complex model with a varying shape over the predictor space when λ is
small. This penalized negative log-likelihood can be interpreted in a Bayesian sense: it
is equivalent to the maximum a posteriori GPD estimator when putting Gaussian prior
N(ξ0, 1/(2λ)) on the shape parameter ξ. Bücher et al. (2020) propose the same penal-
ization as in (2.3.5) to estimate the generalized extreme value distribution parameters,
where the prior distribution is centered around an expert belief ξ0 and λ ≥ 0 reflects the
confidence in such belief.

In practice, when we penalize the shape parameter we modify Algorithm 2 by replacing
Line 3 of the ERF-Predict subroutine with (2.3.5). Similarly, we cross-validate λ using
the scheme presented in Section 2.3.3 on the modified Algorithm 2. Figure 2.3 shows the
square root MISE over 50 simulations for different values of λ and different quantile levels.
Here, we set ξ0 as the estimated unconditional shape parameter.

2.4 Simulation Study

2.4.1 Setup
We compare ERF to other quantile regression methods on simulated data sets, assess-
ing the properties of the different approaches. In the three experiments, we simulate
n training observations (X1, Y1), . . . , (Xn, Yn) as independent copies of a random vector
(X, Y ). We always generate the predictor X ∈ Rp from a uniform distribution on the cube
[−1, 1]p for different dimensions p. We let the conditional response variable Y | X = x
follow distributions such as Gaussian or Student’s t, with tail heaviness depending on the
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Figure 2.3: Square root MISE of ERF for different penalty values λ and quantile levels τ
over 50 simulations. The data is generated according to Example 2.1.

simulation study. The parameters of these distributions, and therefore also the parame-
ters of the GPD corresponding to their tails, vary as functions of the predictor value x.
Different response surfaces are considered. The goal is to predict the quantiles Qx(τ) of
the conditional response Y | X = x for moderately to very extreme quantile levels τ > 0.

We evaluate the performance of the method on a test data set {xi}n
′
i=1 of n′ = 1000

observations generated with a Halton sequence (Halton, 1964) on the cube [−1, 1]p. For a
fitted quantile regression function x 7→ Q̂x(τ), τ ∈ (0, 1), we then compute the integrated
squared error (ISE) on the test data set as

ISE = 1
n′

n′∑
i=1

(
Q̂xi

(τ)−Qxi
(τ)
)2
,

where x 7→ Qx(τ) is the true quantile function of the model. Repeating the simulation,
fitting and evaluation m = 50 times, we obtain the mean integrated squared error (MISE)
as the average of the different ISEs.

In the first experiment, we study how ERF performs on the two challenges of high
quantile levels and large, but fixed, dimensions of the predictor spaces illustrated in Fig-
ure 2.1. The data sets follow the model of Example 2.1 where the response has a Student’s
t-distribution with scale shift according to a step function. We consider the methods’ per-
formances for different dimensions p of the predictor space and different quantile levels τ .

The second experiment illustrates the performance of ERF and other methods under
different tail heaviness of the noise distribution. The data generating function is the same
as in the first experiment, except that the tail of the noise ranges from the light-tailed
Gaussian case with ξ = 0 to the relatively heavy tails of Student’s t distributions with
large ξ > 0.

In the last experiment (see Appendix B.4.2), we consider more complex regression
functions for the conditional response variables to assess the performance of the quantile
regression methods on complex data. The underlying models depend on more than one
predictor value, and both the scale and the shape parameters vary simultaneously.

2.4.2 Competing Methods
Among the forest-based algorithms, we consider the quantile regression forest by Mein-
shausen (2006), denoted by QRF, and the generalized random forest by Athey et al.



42 Chapter 2. Extremal Random Forests

(2019), denoted by GRF. Since these methods do not rely on the GPD likelihood, it is
not possible to cross-validate their tuning parameters as in Section 2.3.3 for prediction
error of extreme quantiles. However, in independent simulations, we notice that their
tuning parameters do not have big influence on the results. We set their tuning param-
eters to the default values and and fit the quantile functions Q̂QRF

x (τ), Q̂GRF
x (τ) on the

training data for some τ ∈ (0, 1). More details on forest-based approaches can be found
in Section 2.2.2.

As a hybrid method that uses forest-based weights, we consider the method EGP
Tail proposed by Taillardat et al. (2019) who assume that the entire conditional distri-
bution Y | X = x follows a parametric family called extended generalized Pareto (EGP)
distribution. They estimate the covariate dependent parameters of the EGP through a
probability-weighted method of moments using the estimated quantiles Q̂GRF

x (τ) of the
GRF. We follow the authors’ implementation and use the default parameter values.

Our ERF method is part of the class of extrapolation approaches that model the ex-
ceedances Zi in (2.3.2) by conditional GPD distributions. Among the numerous methods
that follow this strategy we present only those from Youngman (2019) and Velthoen et al.
(2021) as they turn out to be most competitive. Other existing extrapolation based meth-
ods are not flexible enough in our setting (Wang and Tsai, 2009; Wang et al., 2012) or do
not perform well with larger noise dimensions (Daouia et al., 2011; Gardes and Stupfler,
2019). For the sake of comparability, for all extrapolation methods we use the same ex-
ceedances Zi = (Yi − Q̂GRF

x (τ0))+, which are computed from a GRF with intermediate
quantile level τ0 = 0.8 ≤ τ . To assess the sensitivity of our method to the intermediate
threshold τ0, we perform a simulation study for a data set generated according to Ex-
ample 2.1; see Figure B.2 in Appendix B.4.1. In this setup, the intermediate threshold
does not strongly influence the results. In general, the optimal choice will depend on
the properties of the data (see de Haan and Ferreira, 2006, Section 3.2) and numerous
data-driven methods for choosing the threshold exist (e.g., Embrechts et al., 2012, Section
6.2.2).

The method from Youngman (2019) uses generalized additive models to estimate the
parameters of a GPD distribution. Here, we model the scale and shape parameters as
smooth additive functions of the covariates without interaction effects. In the sequel, we
abbreviate this method by EGAM. Velthoen et al. (2021) propose the GBEX method
to estimate the GPD parameters using gradient boosting (Friedman, 2001b, 2002). In
particular, they grow two sequences of gradient trees to model the conditional scale and
shape parameter, respectively. To fit GBEX, we use 5-fold cross validation with a maxi-
mum number of trees per fold set to Bmax = 500. We set the depth of each gradient tree
D = 2, and we set the learning rate for the scale parameter to λσ = 0.1. We set the other
tuning parameters to their default values. We also consider the unconditional model as a
baseline, where we fit constant GPD parameters (σ, ξ) to the conditional exceedances Zi.

Concerning our ERF method, we fit the parameters as described in Algorithm 2 using
the repeated cross-validation scheme described in Section 2.3.3. In particular we re-
peat three times 5-fold cross-validation to tune the minimum node size κ ∈ {10, 40, 100}
and the penalty λ ∈ {0, 0.01, 0.001} for the shape parameter. We leave the other tun-
ing parameters of the random forests at their default values; see the documentation for
quantile forest in Tibshirani et al. (2021). All simulation results can be reproduced fol-
lowing the description and code on https://github.com/nicolagnecco/erf-numerical-results.

https://github.com/nicolagnecco/erf-numerical-results
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2.4.3 Experiment 1
In this simulation study, the data follows the model of Example 2.1 where the response
variable Y | X = x follows a Student’s t-distribution with ν(x) ≡ 1/ξ(x) = 4 degrees of
freedom and scale s(x) = 1 + 1{x1 > 0}. This is the same setup as in the simulation in
Athey et al. (2019, Section 5), except that here we use Student’s t-distribution instead of
Gaussian for the noise. There is only one signal variable X1 and p−1 noise variables. We
generate n = 2000 training data and consider different dimensions p and quantile levels
τ .

We first fix the dimension p = 10 and investigate the effect of different target quantile
levels τ on the prediction performances of the competing methods. The top panel of
Figure 2.4 shows the MISE, as defined in Section 2.4.1, for varying values of τ close to
1, and its decomposition in terms of bias and variance. At the intermediate quantile
level τ0 = 0.8 all methods show a similar performance; in fact, the extrapolation methods
coincide at this level since they use the same GRF based estimator for the intermediate
quantile. When the quantile level τ increases, or equivalently, the expected number of
exceedances n(1 − τ) in the training sample decreases, we observe that the performance
curves diverge. The forest-based quantile regression methods that do not explicitly use
extreme value theory for tail approximations cannot extrapolate well to extreme quantile
levels. This includes the EGP Tail method that does not focus on modeling the tail. Their
degradation in performance is mainly driven by high variance. Among the extrapolation
methods, the unconditional baseline does not perform well since it cannot capture the
shift in the scale function and therefore it presents a high bias. While the EGAM does
better, it shows a pretty large bias already in this setup with ten predictors, a fact that
we discuss in detail below. By far, the best methods are our ERF and the GBEX. Both
combine the flexibility in the predictor space with correct extrapolation originating from
the GPD approximation.

We next compare the performances for varying dimensions p of the predictor space.
The bottom panel of Figure 2.4 shows the MISE as a function of p for fixed quantile
levels τ = 0.9995, and its bias and variance decomposition. QRF and GRF look relatively
robust against growing dimensions and additional noise variables, but the performance
is not competitive for higher quantiles levels. As before, their performance is mainly
explained by large variance. For smaller dimensions, the methods deteriorate because of
the overfitting; the trees can only place split on the signal variable X1, increasing the
variance. The performance of EGAM clearly illustrates that this method suffers from
high bias in large dimensions. The method cannot filter the signal from the many noise
variables even though, in principle, it is flexible enough to model the response function;
the latter is indicated by the good performance for very small noise dimension. Moreover,
as mentioned by Youngman (2019), the method becomes computationally demanding as p
grows. The unconditional model, while biased, has constant performance across different
dimensions since it does not use the predictor values. Both ERF and GBEX combine the
advantages of the two types of approaches. They are both robust against additional noise
variables and perform well even for large dimensional predictor spaces.

2.4.4 Experiment 2
In the second experiment, we illustrate the performance of the quantile regression methods
under several tail heaviness of the noise distribution in a large dimension. The simulation
setup is similar to the previous section and data follows the model of Example 2.1, where
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Figure 2.4: Square root MISE for different methods against the quantile level τ in di-
mension p = 10 (left), and against the model dimension p for quantile levels τ = 0.9995
(right).

we set p = 40. We simulate data for noise distributions with shape parameters ξ =
0, 1/4, 1/3, where for the light-tailed case ξ = 0 we choose a Gaussian distribution and
otherwise a Student’s t distribution with ξ = 1/4, 1/3 corresponding v = 4, 3 degrees
of freedom, respectively. We exclude EGAM in this experiment since its performance
decreases for large p and it becomes computationally prohibitive (see Figure 2.4).

Figure 2.5 shows boxplots of the
√

ISE for the extreme quantile level τ = 0.9995 for
the different methods and different shape parameters. The triangles correspond to the
average values. To make the plot easier to visualize, we remove large outliers of GRF
and QRF. The picture is similar for the three noise distributions. We observe that ERF
performs very well also in the Gaussian case. Since our method relies on the GPD,
estimation is not restricted to positive shape parameters, as opposed to approaches based
on the Hill estimator (e.g., Wang et al., 2012; Wang and Li, 2013). Unsurprisingly, as
the noise becomes very heavy-tailed (right-hand side of Figure 2.5) the performances of
all methods become closer since the problem becomes increasingly difficult. We further
note that the performance of both QRF and GRF degrades for large values of ξ. They
exhibit increasingly large outliers that result in an average exceeding the upper quartile.
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Figure 2.5: Boxplots of
√

ISE over m = 50 simulations, for different tail indices in the
noise distribution at the quantile level τ = 0.9995. The predictor space dimension is
p = 40. Triangles represent the average values.

This underlines that classical methods without proper extrapolation are insufficient for
extreme quantile regression.

2.5 Analysis of the U.S. Wage Structure
We compare the performance of ERF, GBEX, GRF, and the unconditional GPD on the
U.S. census microdata for the year 1980 (Angrist et al., 2009). As described therein, the
data set consists of 65,023 U.S.-born black and white men of age between 40–49, with
five to twenty years of education, and with positive annual earnings and hours worked
in the year before the census. The large number of observations makes this dataset
suitable to assess the performance of the different methods at very high quantile levels.
The response Y describes the weekly wage, expressed in 1989 U.S. dollars computed
as the annual income divided by the number of weeks worked. The predictor vector
consists of the numerical variables age and years of education and the categorical predictor
whether the person is black or white. To make the data set higher dimensional, we add
ten random predictors sampled independently from uniform distributions on the interval
[−1, 1], resulting in a predictor space’s dimension p = 13.

Throughout this analysis, we fit ERF repeating three times 5-fold cross-validation to
tune the minimum node size κ ∈ {5, 40, 100}. To stabilize the variance of the shape
parameter, we set the penalty λ = 0.01. Regarding the other methods, we use the same
tuning parameter setup as in 2.4.2. In particular, we use GRF to predict the intermediate
conditional quantiles at level τ0 = 0.8 for all extrapolation-based methods. We split the
original data into two halves, i.e., 32,511 and 32,512 samples, respectively. We use the first
portion to perform an exploratory data analysis and the second one to fit and evaluate
the different methods.

For the exploratory data analysis, we fit ERF on a random subset made of 10% of the
data (i.e., 3,251 observations), and predict the GPD parameters θ̂(x) = (σ̂(x), ξ̂(x)) on
the left-out observations (i.e., 29,260 observations). Figure 2.6 shows the estimated GPD
parameters θ̂(x) as a function of years of education. We observe that the scale parameter
depends positively on years of education, whereas it is quite homogeneous between the
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Figure 2.6: Estimated GPD parameters θ̂(x) as a function of the years of education for
the black (triangles) and white (circles) subgroups.

black and white groups. In particular, it has a clear jump around 15-16 years of education,
which corresponds to the end of the undergraduate studies. The shape parameter is
relatively homogeneous for the black and white group and looks stable for education.
It ranges between 0.22 and 0.24, indicating heavy-tails throughout the predictor space.
Moreover, Figure B.4 in Appendix B.5.1 shows that the scale and shape parameters do
not seem to depend on the predictor age.

In Figure 2.7 we compare the ERF quantile predictions to the ones obtained by the
other methods at levels τ = 0.9, 0.995. To help with the visualization, we removed all
the quantiles above 6,000 predicted by GRF. We observe that the extrapolation methods
retain a good shape of the quantile function even for high levels. This does not hold
for GRF, whose profile worsens as τ increases, and the discrete structure of the largest
training observations becomes visible. The unconditional method seems to capture the
variability of the conditional quantiles for τ = 0.9, but we observe that it loses flexibility
for larger values of τ . The reason for this is that the unconditional method cannot produce
different scale parameters of the GPD, while Figure 2.6 indicates that this is necessary
for this data set. ERF and GBEX model well the variability of the conditional quantiles
for all values of τ , and they agree on the magnitude of the estimates.

After the exploratory analysis, we assess the quantitative performance of ERF com-
pared to the other methods. We consider the prediction metric proposed by Wang and
Li (2013),

Rn

(
Q̂·(τ)

)
:=

∑n
i=1 1{Yi < Q̂Xi

(τ)} − nτ√
nτ(1− τ)

, (2.5.1)

where n is the number of test observations, and Q̂·(τ) is the τ -th conditional quantile
estimated on the training data set. This metric compares the normalized estimated pro-
portion of observations with Yi < Q̂Xi

(τ) with the theoretical level τ . Using the true
quantile function Q·(τ), the random variable 1{Yi < QXi

(τ)} follows a Bernoulli distribu-
tion with expectation τ and variance τ(1−τ), and by the central limit theorem the metric
with oracle quantile function Rn(Q·(τ)) is asymptotically standard normal. We partition
the 32,512 observations not used in the exploratory analysis into ten random folds. On
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Figure 2.7: Predicted quantiles at levels τ = 0.9, 0.995 for ERF, GRF, GBEX, and the
unconditional method.

each fold, we fit the different methods and evaluate them on the left-out observations,
using the absolute value of (2.5.1). Unlike classical cross-validation, we fit the methods
using a single fold and validate them on the remaining ones; this allows us to have enough
observations to gauge their performance for high quantile levels τ . Figure 2.8 shows the
performance of ERF, GRF, GBEX, and the unconditional method over the ten repetitions
for different quantile levels. The shaded area represents the 95% interval of the absolute
value of a standard normal distribution, corresponding to the 95% confidence level of the
oracle method with true quantile function. We observe that both ERF and GBEX have
very good performance compared to the oracle for increasing quantile levels, and they
outperform the unconditional method for large values of τ . This is because they are flexi-
ble to model the scale and shape as a function of the predictors, unlike the unconditional
method. While GRF performs well for the quantile level τ = 0.9, it worsens quite quickly
for larger values of τ . This is expected since GRF does not rely on extrapolation results
from extreme value theory and cannot accurately predict very high quantiles.

For the same data set, Angrist et al. (2006) consider the natural logarithm of the wage
as a response variable for quantile regression with fixed, non-extreme quantile levels. In
Appendix B.5.1 we perform our analysis above for extreme quantiles again with this
log-transformed response since it highlights several interesting properties of the ERF
algorithm. In particular, Figure B.6 in Appendix B.5.2 shows that the flexible methods
ERF and GBEX have the desirable property that the predictions do not change much
under marginal transformations. The unconditional method, on the other hand, seems
to be sensitive to marginal transformations; for an explanation and details, see Appendix
B.5.1. In general, therefore, it is advised to use a flexible extrapolation method, such as
ERF or GBEX, that performs well on any marginal distributions.
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Distribution generalization in
semi-parametric models: A control
function approach

Joint work with
Sebastian Engelke, Niklas Pfister, and Jonas Peters

Abstract

Distribution generalization aims at learning a function with predictive
guarantees when the test distribution differs from the training. In this work,
we adopt a causal approach to address the problem by modelling distribu-
tional shifts with causal interventions (Pearl, 2009a; Peters et al., 2017). We
consider the problem of predicting a real-valued response when the data comes
from different environments that shift the mean of the predictors. We assume
the presence of hidden confounders and a possibly large dimensional predic-
tor space. Our goal is to learn a nonparametric function that minimizes the
worst-case mean squared error over unseen environments. Existing literature
provides minimax guarantees when the function class is linear. However, in
the case of nonlinear function classes, existing methods do not provide such
guarantees or do not scale to large dimensions. Here, we propose a method to
learn a function that has invariant predictions across environments and is as
predictive as possible. We define such function as the invariant most predic-
tive (IMP), and we show identification using control variables (Ng and Pinkse,
1995; Newey et al., 1999). Furthermore, we provide minimax guarantees over
unseen environments over the class of square-integrable functions. Lastly, we
propose an adaptation of the regression tree algorithm (Breiman et al., 1984)
to learn the IMP function nonparametrically in large dimensions.

Keywords: distribution generalization; nonparametric regression; structural causal
models; control functions; regression trees.

3.1 Introduction
Let Y ∈ R be a real valued response andX ∈ Rp a vector of mean-zero predictors. Suppose
the data (X, Y ) is generated from different environments E that induce a mean shift in the
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predictors. That is, for all e ∈ E there exists some mean vector µe ∈ Rp and independent
noise term Ve ∼ PV such that Xe = µe+Ve. For all e ∈ E , denote by supp(Xe) the support
of Xe and define the support over the environments E as supp(E) := ∪{supp(Xe) : e ∈ E}.
The span generated by the environments E is defined as span(E) := span({µe : e ∈ E}).
At training time, we collect data (Xe, Ye) with e ∈ Etr for a subset of environments Etr :=
{1, . . . , r} ⊆ E that is “rich enough”, i.e., span(Etr) = span(E) and supp(Etr) = supp(E).
The goal of this work is to learn a nonparametric function f � : Rp → R that predicts well
on all environments E , i.e.,

f � := arg min
f∈F

sup
e∈E

E
[
(Ye − f(Xe))2

]
, (3.1.1)

where F is a given function class. One can think of E as the set of all possible environments
that might occur at test time. Rothenhäusler et al. (2021) show how to learn f � when F
is the class of linear functions. Their idea is to exploit the heterogeneity of the observed
environments Etr ⊆ E to learn a function f̃ : Rp → R that (i) has invariant performance
across the observed environments, and (ii) is as predictive as possible. Property (i) means
that the function of interest f̃ ∈ F satisfies

Ye = f̃(Xe) + Ũe, for all e ∈ Etr, (3.1.2)

where Ũe ∼ PU is possibly correlated with Ve. Property (ii) means that the function of
interest f̃ ∈ F minimizes the mean squared prediction error (MSPE). When F consists of
linear functions, Rothenhäusler et al. (2021) show that the proposed function f̃ minimizes
the worst-case MSPE defined in (3.1.1). We extend the work of Rothenhäusler et al. (2021)
to the case where F is the class of arbitrary functions with bounded second moment. We
define the invariant most predictive (IMP) function (see Definition (3.2)), and characterize
its identification with the control function approach of Ng and Pinkse (1995) and Newey
et al. (1999). Also, we show that the IMP function is minimax optimal in the sense
of (3.1.1). To learn the IMP function in large dimensions, we propose an adaptation of
the regression tree algorithm (Breiman et al., 1984).

To motivate the analysis, we set up a simple example.

Example 3.1. Consider the problem of predicting a patient’s blood pressure Y ∈ R
based on the normalized age and weight predictors X ∈ R2. Suppose we collect an
equal amount of data from two hospitals Etr := {−1, 1}, such that Xe = µe + Ve, for all
e ∈ Etr. Figure 3.1 shows the distribution of the predictors across the two environments.
The hospitals means are µ1 = (−1,−1) and µ2 = (1, 1), respectively. Moreover, the
support of the training environments, supp(Etr), is bounded. The heterogeneity in the two
environments creates a mean shift in the span(Etr) := span({µ1, µ2}) ⊆ R2. By exploiting
the heterogeneity in the observed data, one can learn the IMP function fIMP : R2 → R
that (i) has invariant performance across the two hospitals, and (ii) is as predictive as
possible. In fact, fIMP minimizes the worst-case MSPE (3.1.1) over the test environments
E , as long as span(E) = span(Etr), and supp(E) = supp(Etr). /

Why is E[Y | X = x] not enough? The regression function x 7→ E[Y | X = x]
minimizes the MSPE on the training observations, and therefore is the most predictive
function on the observed data. However, when the predictors are endogenous (Wooldridge,
2010), e.g., they are correlated with the errors in the response, then x 7→ E[Y | X = x]
is not invariant. This means that the distribution of the residuals Y − E[Y | X] depends
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Figure 3.1: Distribution of the predictors across two environments. The support of the
training environments supp(Etr) is bounded because the noise terms Ve have bounded
support for all e ∈ Etr, and because Etr is finite.

on the environments. In turn, this might lead to poor performance of the regression
function under certain unseen environments in E . On the other hand, the IMP function
is the most predictive function among the invariant ones, and therefore achieves a good
performance across all environments E . Figure 3.2 compares the IMP function to the
regression function E[Y | X = x] when the possible future environments are E = {1, 2, 3}
and the training environments are Etr = {1, 2}, so that the unseen environment is E \Etr =
{3}. The IMP function achieves a low and constant MSPE on all environments. In
contrast, the regression function performs well on the training environments, but not on
unseen environments.

Do invariant functions exist? Existence of an invariant function as in (3.1.2) is a
modeling assumption that we make precise in Section 3.2. Uniqueness, instead, depends
on the dimension of the predictor space and the heterogeneity induced by the training
environments Etr. When the X ∈ Rp and span(Etr) = Rp, there exists a unique invariant
function (see Section 3.3); this relates to the identification condition in the instrumental
variable setting (Angrist et al., 1996; Imbens, 2014). On the other hand, when the number
of predictors is large, it is unlikely to observe enough environments such that span(Etr) =
Rp. In such a case, there exists a class of invariant functions I, where each f ∈ I
satisfies (3.1.2). Among these invariant functions, our goal is to identify and estimate the
most predictive one (see Definition 3.2).

3.1.1 Related work
The problem of predicting in new unseen environments is of great importance in sev-
eral applications, and it has been named out-of-distribution (OOD) generalization in the
machine learning and statistics community. The goal of OOD generalization is to learn
a predictive function when the training and test distributions are different (Quiñonero-
Candela et al., 2009). In the machine learning literature, one well-established approach is
to assume that the unseen environments are sampled from a distribution that is ‘close’ to
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Figure 3.2: Illustrative example comparing the IMP function to the regression function
x 7→ E[Y | X = x]. The IMP function achieves a low and constant MSPE on all
environments. In contrast, the the regression function performs well on the training
environments, but not on unseen environments.

the observed distribution with respect to the Wasserstein distance (Abadeh et al., 2015;
Sinha et al., 2018). Recently, Meinshausen (2018); Bühlmann (2020); Rothenhäusler et al.
(2021); Christiansen et al. (2021) cast the problem of OOD generalization under a causal
perspective, where the shifts in distributions are generated by causal interventions (Pearl,
2009a; Peters et al., 2017). Rothenhäusler et al. (2021) consider a linear instrumental vari-
able (IV) setup, where the causal function is possibly not identified and the instruments
can act directly on the response variable. They introduce the anchor regression approach,
which interpolates between the ordinary least squares (OLS) and the IV solution, and they
show minimax guarantees as in (3.1.1) when F is the class of linear functions. Bühlmann
(2020) extends anchor regression to a nonlinear setting, where F consists of nonlinear
functions and the environments have a nonlinear effect on the predictors. However, it
is not clear whether the proposed approach has the minimax guarantees as in (3.1.1).
Christiansen et al. (2021) introduce the NILE algorithm, which extends anchor regression
to the class of smooth functions that extrapolate linearly outside the observed support.
While their algorithm is competitive in experiments, it has no minimax guarantees and,
in practice, it works only when the predictor space has small dimensions (e.g., p = 1, 2).

3.2 Setup
Unless specified otherwise, we consider the following structural causal model (SCM)

E := εE, V := εV , U := γTV + εU

X := ME + V

Y := f(X) + U,

(3.2.1)

where (εE, εU , εV ) ∼ Q are jointly independent noise variables, E ∈ Rr is a vector that
encodes the environments, X ∈ Rp are predictors, and Y ∈ R is a response. We assume
that E[εE] = 0, E[εEεTE] � 0, and εU , εV are standard Gaussian. We denote this model by
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C = (f,M, γ,Q), where f ∈ F := {f : Rp → R : ∫ f(X)2 dPX < ∞}, M : Rp×r → Rp is
full column rank, and γ ∈ Rp. Any model C as defined in (3.2.1), induces a distribution
PC over the observed variables (E,X, Y ). In addition to the observational distribution,
we only consider the distributions arising from hard interventions on the environment
variable, i.e., do(E := e). We denote the data generating model by C0 = (f0,M0, γ0, Q0),
and we refer to the function f0 as the target function. A comment is in order: model C
in (3.2.1) does not describe the distributions induced by interventions on X or Y , and so,
the function f can differ from the causal function between X and Y (see Remark 3.3).

To better understand model C, we consider three examples. First, we illustrate how
we can rewrite Example 3.1 within the framework of the SCM C0.

Remark 3.1. Consider again the problem of predicting a patient’s blood pressure Y ∈ R
based on the age and weight predictors X ∈ R2. We collect an equal amount of data
from two hospitals, with µ1 = (−1,−1) and µ2 = −µ1, so that Xe = µe + Ve and
Ve ∼ PV , e ∈ Etr = {−1, 1}. Let E ∈ {1,−1} ⊆ R be a random variable encoding the
two environments, with P(E = 1) = 1/2. Furthermore, denote by M0 = µ1 ∈ R2×1 the
matrix whose image im(M0) = span({µ1, µ2}). Then, the predictor vector can be written
as X = M0E + V , with V ∼ PV . /

Our SCM C0 is also related to the instrumental variable setup (Angrist et al., 1996;
Imbens, 2014).

Remark 3.2. Let E ∈ Rr denote a vector of r valid instruments, and let f0 : Rp → R
denote the causal function from X to Y . Then our SCM C0 is similar to a semi-parametric
instrumental variable model, where the relationship is linear between E and X, and
nonparametric between X and Y . Unlike the instrumental variable setup, however, here
we do not require identification of the causal function, since we allow the number of
instruments to be less than or equal to the number of predictors, i.e., r ≤ p. Moreover,
we do not require the instruments to be valid, in the sense that E can also directly affect
the response variable. If this is the case, f0 : Rp → R is not anymore the causal function
from X to Y (see Remark 3.3). /

Finally, we provide an example of an SCM C̃ that is equivalent to C0 under the obser-
vational distribution and under interventions do(E := e).

Remark 3.3. Consider the following SCM C̃ and related directed acyclic graph (DAG),

E := εE ∈ Rr,

H := BHEE + εH ∈ Rq,

X := BXEE +BXHH + εX ∈ Rp,

Y := g0(X) +BY EE +BY HH + εY ∈ R,
(3.2.2)

X

H

E

Yg0

where (εE, εH , εX , εY ) ∼ N(0,Σ) such that Σ is positive definite and εE, εH , εX , εY are
jointly independent. Here, g0 : Rp → R denotes the causal function from X to Y , B·· are
linear maps of suitable sizes, and H ∈ Rq is a vector of hidden confounders. Model (3.2.2)
corresponds to the nonlinear anchor regression setup with a nonparametric causal func-
tion (Rothenhäusler et al., 2021; Bühlmann, 2020). If we only allow for interventions
on E, then (3.2.2) is observationally and interventionally equivalent (when considering
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interventions on E, X, and Y ) to

X := M0E + V,

Y := g0(X) + ηT0 E +BY HεH + εY ,

where V := BXHεH + εX ⊥⊥ E, M0 := BXE + BXHBHE, and ηT0 := BY E + BY HBHE.
Since M0 ∈ Rp×r has full column rank, we can express E = M+

0 (X − V ), where M+
0

denotes the Moore–Penrose inverse of M0. Moreover, define f0(X) := g0(X) + ηT0 M
+
0 X,

and U := BY HεH + εY − ηT0 M+
0 V . Then, we can write

X := M0E + V,

Y := f0(X) + U,

with E ⊥⊥ (U, V ). In this example, the target function f0 differs from the causal function
g0 because the environment variable E directly affects the response Y . /

3.3 Invariant most predictive function
Our aim is to learn a function f : Rp → R that makes good predictions on unseen
environments. That is, by using the causal framework of Section 3.2, we rewrite our
target of inference in (3.1.1) as

f � := arg min
f∈F

sup
e∈Rr

E[(Y − f(X))2 | do(E := e)], (3.3.1)

where the expectation is taken with respect to the interventional distribution induced
by do(E := e). In words, the function f � minimizes the worst-case risk over any hard
intervention on the environment vector E ∈ Rr. The right-hand side of (3.3.1) involves
evaluating the MSPE for all possible interventional distributions, and therefore it cannot
be evaluated directly. Therefore, we propose to identify from the observational distribu-
tion PC0 the invariant most predictive model (IMP) and show that is a solution for (3.3.1).

First, we introduce the class of invariant functions. These functions are natural can-
didates to solve (3.3.1) since their residuals do not depend on the environment vector E.

Definition 3.1. Consider an SCM C0 as defined in (3.2.1). We define the class of in-
variant functions related to C0 as

I =
{
f ∈ F : Y − f(X) ⊥⊥ E

}
. (3.3.2)

While it is clear that f0 ∈ I, it is interesting to study under which conditions {f0} ( I.
In fact, the cardinality I depends on the relationship between the dimension of predictors
X ∈ Rp and the environment vector E ∈ Rr. Consider the following example.

Example 3.2. Consider again the setup of Remark 3.1. The two environments span a
one-dimensional space im(M0); see Figure 3.3. On the other hand, the predictor space
is two-dimensional, and therefore, the orthogonal complement of im(M0), denoted by
ker(MT

0 ), is one-dimensional. Furthermore,

δ ∈ ker(MT
0 ) =⇒ δTX = δTM0E + δTV = δTV.

Therefore, any function f(x) = f0(x)+δTx, with δ ∈ ker(MT
0 ), is such that Y −f(X) ⊥⊥ E,

and so f ∈ I. /
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Figure 3.3: Distribution of the predictors across two different environments. The two
environments shift the mean of the predictors along the one-dimensional im(M0). The
orthogonal complement ker(MT

0 ), by construction, is invariant to any shift in the direction
of im(M0).

Having introduced the invariant set I, we now define the invariant most predictive
(IMP) function, i.e., the invariant function minimizing the MSPE.

Definition 3.2. Consider an SCM C0 as defined in (3.2.1). Let I denote the class of
invariant functions related to C0. The invariant most predictive (IMP) function is defined
as

fIMP := arg min
f∈I

E
[
(Y − f(X))2

]
, (3.3.3)

where the expectation is with respect to the observational distribution PC0.

Unlike (3.3.1), the IMP function in (3.3.3) can be identified and estimated from PC0 .
However, direct optimization over I is challenging. In principle, one could identify (3.3.3)
by using econometric methods based on the generalized methods of moments (GMM)
(Poirier, 2017) or by solving a non-linear ill-posed inverse problem (Dunker et al., 2014;
Dunker, 2021). One limitation of these approaches, however, is that they estimate the
target function “globally” over the predictor space Rp. In other words, they minimize
the mean squared error while enforcing at the same time invariance of the residuals.
This “global” approach is not well suited for nonparametric regression techniques which,
instead, learn the optimal function locally, e.g., at each point in the predictor space
x0 ∈ Rp, they estimate f(x0) = E[Y | X = x0].

Remark 3.4. For an arbitrary function class F , the zero-covariance condition (a) E[(Y −
f(X))E] = 0 used in linear instrumental variables and anchor regression (Greene, 2003;
Rothenhäusler et al., 2021; Bühlmann, 2020) is not sufficient to enforce an invariant
function f ∈ I. Even the slightly stronger condition (b) E[Y − f(X) | E] = 0 used in
nonparametric instrumental variables (Newey and Powell, 2003) does not imply f ∈ I.
Next, we show an example where (a) and (b) hold but f /∈ I. /
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Example 3.3. Consider an SCM C0, as defined in (3.2.1), with two-dimensional predictor
vector X ∈ R2. Let V ∼ N(0, I2), U ∼ N(0, 1), and E ∈ {−1, 1} follows a Rademacher
distribution, with E ⊥⊥ (U, V ). Moreover, let M0 = (1, 0)T . We can write C0 as

X1 = E + V1, X2 = V2, Y = f0(X) + U.

Notice that X1 ⊥⊥ X2 and X1 ⊥⊥ X2 | E. Consider the function f(x1, x2) = f0(x1, x2) +
x1x2 for all (x1, x2) ∈ R2. We have that Y − f(X1, X2) = U −X1X2. Therefore,

E[(Y − f(X))E] = E[UE]− E[X1X2E] = E[U ] E[E]− E[X1E] E[X2] = 0.

Also,

E[Y − f(X) | E] = E[U | E]− E[X1X2 | E] = E[U ]− E[X1 | E] E[X2] = 0.

However, even invariance of the first moment of Y − f(X) is not enough. In fact,

E[(Y − f(X))2 | E] = E[U2 +X2
1X

2
2 − 2UX1X2 | E]

= E[U2] + E[X2
1 | E] E[X2

2 ]− 2E[U ] E[X1X2 | E]
= 1 + E[E2 + V 2

1 + 2EV1 | E] = 2 + E2,

and thus f /∈ I. /

Given the difficulty of directly optimizing (3.3.3), we consider a subset J ⊆ I that is
simpler to deal with, and can be estimated with nonparametric regression techniques.

Definition 3.3. Consider an SCM C0 as defined in (3.2.1). We define the class of linear
invariant functions related to C0 as

J :=
{
f ∈ F : there exists δ ∈ ker(MT

0 ) s.t. f(x) = f0(x) + δTx for all x ∈ Rp
}
.

(3.3.4)

The set J is a subset of I and contains all functions that differ from f0 by an element
δ ∈ ker(MT ). The following proposition shows that J is a proper subset of I.

Proposition 3.4. Consider an SCM C0 as defined in (3.2.1). Let I and J denote the
classes of invariant and linear invariant functions related to C0, respectively. Then, it
holds that J ( I.

A proof can be found in Appendix C.1.1. By Proposition 3.4, it is clear that,

min
f∈I

E
[
(Y − f(X))2

]
≤ min

f∈J
E
[
(Y − f(X))2

]
. (3.3.5)

We will later show that the two quantities in (3.3.5) are equal (see Corollary 3.9).

3.3.1 Identification
We show that the set J is identified from the observed data by a conditional expectation,
and therefore, any function f ∈ J can be estimated using nonparametric regression
techniques. Identification of J relies on the control function approach developed by Ng
and Pinkse (1995); Newey et al. (1999).
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Proposition 3.5. Consider an SCM C0 as defined in (3.2.1). Let J denote the class of
linear invariant functions related to C0. Then, for any f ∈ F , if holds that f ∈ J if and
only if there exists γ ∈ Rp such that for almost every (a.e.) x, v ∈ Rp it holds that

E[Y | X = x, V = v] = f(x) + γTv, (3.3.6)

where the expectation is with respect to the observational distribution PC0.

A proof can be found in Appendix C.1.2. Proposition 3.5 states that any function f ∈ J
can be identified by performing an additive regression of the form f(x)+γTv. This allows
us to adapt existing nonparametric techniques to compute f ∈ J ; see Section 3.3.3.

If ker(MT
0 ) contains non-zero vectors, the set J contains infinitely many functions.

To obtain the most predictive function in J , we perform two steps. First, we identify an
element f̃ ∈ J by fitting a nonparametric regression model as defined in (3.3.6). Given
f̃ ∈ J , we then optimize over the invariant space ker(MT

0 ) to find an optimal δ̃ ∈ ker(MT
0 ),

i.e.,

min
f∈J

E
[
(Y − f(X))2

]
= min

δ∈ker(MT
0 )

E
[
(Y − f̃(X)− δTX)2

]
,

so that the optimal function writes f ∗(x) = f̃(x) + δ̃Tx, for all x ∈ Rp. The next
proposition shows that the optimal function f ∗ has an explicit expression in terms of the
data generating model C0 = (f0,M0, γ0, Q0). Moreover, it shows that the optimal function
f ∗ is well-defined, i.e., it does not depend on the choice of representative function f̃ ∈ J .

Proposition 3.6. Consider an SCM C0 as defined in (3.2.1). Let V ∼ N(0, S) with
S � 0, and let R ∈ Rp×(p−r) denote an orthonormal basis for ker(MT

0 ). Define

δ0 := R(RTSR)−1RTSγ0 ∈ Rp. (3.3.7)

Then, it holds

δ0 = arg min
δ∈ker(MT

0 )
E
[
(Y − f0(X)− δTX)2

]
,

and so, the optimal function writes f ∗(x) = f0(x) + δT0 x, for all x ∈ Rp. Moreover, the
optimal function f ∗ is well-defined.

A proof can be found in Appendix C.1.3.

3.3.2 Distribution generalization
Given the set J , we can compute

f ∗ := arg min
f∈J

E[(Y − f(X))2], (3.3.8)

where the expectation is taken with respect to PC0 . The function f ∗ is invariant, and is
the most predictive among all members of J . In fact, it turns out that f ∗ is minimax
optimal under all hard interventions on the environment vector E ∈ Rr, that is

min
f∈J

E[(Y − f(X))2] = min
f∈F

sup
e∈Rr

E[(Y − f(X))2 | do(E := e)].

Before stating the minimax result, we provide the following lemma.
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Lemma 3.7. Consider an SCM C0 as defined in (3.2.1). Let V ∼ N(0, S) with S � 0.
Define the function F : F × Rr → [0,∞) for all h ∈ F and e ∈ Rr by

F (h, e) := E[(V Tγ0 − h(M0e+ V ))2].

Let δ0 ∈ ker(MT
0 ) be the minimizer defined in (3.3.7). Then, it holds that

E[(V Tγ0 − V T δ0)2] = inf
h∈F

sup
e∈R

F (h, e).

A proof can be found in Appendix C.1.4. Based on Lemma 3.7, we show that the mini-
mizer of the MSPE over J achieves the minimax loss under all hard interventions on the
environment vector.

Theorem 3.8. Consider an SCM C0 as defined in (3.2.1). Let J denote the class of
invariant linear functions related to C0. Then, under any hard intervention do(E := e),
e ∈ Rr, it holds that

min
f∈J

E[(Y − f(X))2] = min
f∈F

sup
e∈Rr

E[(Y − f(X))2 | do(E := e)]. (3.3.9)

A proof can be found in Appendix C.1.5. Building on this minimax result, we can now
show that minimization of the MSPE over the set of invariant functions I is attained in
J .

Corollary 3.9. Consider an SCM C0 as defined in (3.2.1). Let I and J denote the classes
of invariant and linear invariant functions related to C0, respectively. Then, it holds that

min
f∈J

E
[
(Y − f(X))2

]
= min

f∈I
E
[
(Y − f(X))2

]
. (3.3.10)

A proof can be found in Appendix C.1.6.

3.3.3 Learn the IMP function
In this section, we propose an adaptation of the regression tree algorithm (Breiman et al.,
1984) to learn the IMP function in large dimensions. Let (X, Y ) ∈ Rp×R be a predictor
vector and response variable generated from an SCM C0 as defined in (3.2.1). A regression
tree with K leaves, is a function f̂ : Rp → R defined for all x ∈ Rp such that

f̂(x) =
K∑
k=1

θk1 {x ∈ tk} ,

where t1, . . . , tK ⊆ Rp are rectangular regions, and θk is a constant value in the region tk.
We propose to approximate the conditional expectation defined in (3.3.6) with

g(x, v) = f̂(x) + γTv =
K∑
k=1

θk1 {x ∈ tk}+ γTv.

To grow such a tree, we adapt the greedy algorithm of Breiman et al. (1984) as follows.
Let P ⊆ Rp denote a parent node. Then, for any partition C1, C2 ⊆ Rp of P , we define
the criterion

err(C1, C2, θ) = E[(Y − θC11 {X ∈ C1} − θC21 {X ∈ C2} − γTV )2 | X ∈ P ]
= E[(Y − θT X̃)2 | X ∈ P ],

(3.3.11)
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where θ = (θC1 , θC2 , γ) ∈ Rp+2 and X̃ = (1 {X ∈ C1} ,1 {X ∈ C2} , V ) ∈ Rp+2. Then, for
each partition C1, C2, the optimal parameter writes

θ∗ = E[X̃X̃T | X ∈ P ]−1E[X̃Y | X ∈ P ]. (3.3.12)

To draw a parallel, in classical regression trees we consider the criterion

err(C1, C2, θ) = E[(Y − θC11 {X ∈ C1} − θC21 {X ∈ C2})2 | X ∈ P ]

in place of (3.3.11), and the resulting optimal constant values over the partition Cj,
j = 1, 2, writes,

θ∗Cj
= E[1

{
X ∈ Cj

}
| X ∈ P ]−1E[1

{
X ∈ Cj

}
Y | X ∈ P ] = E[Y | X ∈ Cj].

Building upon (3.3.11) and (3.3.12), we can therefore approximate the conditional expec-
tation in (3.3.6) nonparametrically, and learn the IMP function even when the dimension
of the predictor space is large.
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Appendix A

Causal discovery in heavy-tailed data

A.1 Some facts about regular variation
In the sequel, for any two functions f , g : R → R, we write f ∼ g if f(x)/g(x) → 1 as
x→∞. Also, we write Sp := Y1 + · · ·+ Yp, and Mp := max(Y1, . . . , Yp).

Consider independent random variables Y1, . . . , Yp and assume that they have compa-
rable upper tails, i.e., there exist cj, α > 0 and ` ∈ RV0 such that for all j ∈ {1, . . . , p}

P(Yj > x) ∼ cj`(x)x−α, x→∞. (A.1.1)

Lemma A.1. Let Y1, . . . , Yp be real-valued independent regularly varying random variables
with comparable tails. Then,

P(Sp > x) ∼
p∑

h=1
P(Yh > x), x→∞.

The proof for p = 2 of Lemma A.1 can be found in Feller (1971, p. 278) and can be
extended to a general p using induction.

An important property of regularly varying random variable is the max-sum-equivalence
presented in the following lemma (Embrechts et al., 1997, Sec. 1.3.1).

Lemma A.2. Let Y1, . . . , Yp be real-valued, independent regularly varying random vari-
ables with comparable tails. Then, as x→∞,

P(Mp > x) ∼ P(Sp > x).

Proof. We can write, as x→∞,

P{Mp > x} = 1− P
{
Mp ≤ x

}
= 1− P

(
Y1 ≤ x, . . . , Yp ≤ x

)
=

p∑
h=1

P(Yh > x)−
∑

1≤h<h′≤p
P(Yh > x, Yh′ > x) + ∆(x),

where ∆(x) contains terms of higher order interactions of the sets {Yj > x}, j = 1, . . . , p.
Because of independence, the probability

P(Yj > x, Yj′ > x) = o{P(Sp > x)}.

Similarly, this holds for the terms in ∆(x). Recalling, by Lemma A.1, that P(Y1 >
x) + · · ·+ P(Yp > x) ∼ P(Sp > x), the result follows.



64 Appendix A. Causal discovery in heavy-tailed data

Lemma A.3. Let Y1, . . . , Yp be real-valued independent regularly varying random variables
with comparable tails. Then, for j = 1, . . . , p,

P(Yj > x, Sp > x) ∼ P(Yj > x), x→∞.

Proof. For any x > 0 and δ ∈ (0, 1/(2p− 2)), we have, for j = 1, . . . , p,Yj > x+ (p− 1)δx,
⋂
h6=j
{Yh > −δx}

 ⊂ {Yj > x, Sp > x} ⊂ {Yj > x}.

Considering the upper bound, it holds, j = 1, . . . , p,

P(Yj > x, Sp > x) ≤ P(Yj > x).

Regarding the lower bound, we get, as x→∞, j = 1, . . . , p,

P(Yj > x, Sp > x) ≥ P

Yj > x+ (p− 1)δx,
⋂
h6=j
{Yh > −δx}


= P

(
Yj > x+ (p− 1)δx

) ∏
h6=j

P (Yh > −δx) .

Dividing everything by P(Yj > x), and letting first x → ∞ and then δ ↓ 0, we get the
desired result.

Lemma A.4. Let Y1, . . . , Yp be real-valued independent regularly varying random variables
with comparable tails. Then, as x→∞,

P{Sp > x,Mp ≤ x} = o{P(Sp > x)}.

Proof. We first write P{Sp > x,Mp ≤ x} = P(Sp > x) − P{Sp > x,Mp > x}. Let
I := {1, . . . , p}. By definition of the maximum function and using the inclusion-exclusion
principle, it follows that

P{Sp > x,Mp > x} = P

Sp > x,
⋃
h∈I
{Yh > x}


=
∑
h∈I

P
(
Sp > x, Yh > x

)
−

∑
1≤h<h′≤p

P
(
Sp > x, Yh > x, Yh′ > x

)
+ ∆(x).

Regarding the summands in first term, it holds by Lemma A.3, h ∈ I,

P
(
Sp > x, Yh > x

)
∼ P(Yh > x), x→∞.

The summands in the second term can be upper bounded by, 1 ≤ h < h′ ≤ p,

P(Yh > x, Yh′ > x) = o{P(Sp > x)}, x→∞.

The same holds for ∆(x) which contains terms of higher order interactions of the sets
{Yj > x}, j ∈ I. Putting everything together, we obtain

P{Sp > x,Mp ≤ x} ∼ P(Sp > x)−
∑
h∈I

P(Yh > x) + o{P(Sp > x)} = o{P(Sp > x)},

where in the last equality we used Lemma A.1.
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A.2 Proofs

A.2.1 Proof of Lemma 1.2
Proof. Let j, k ∈ V and j 6= k. Recall that each variable Xh, h ∈ V , can be expressed as
a weighted sum of the noise terms ε1, . . . , εp belonging to the ancestors of Xh, as shown
in (1.2.3). Therefore, we can write Xj and Xk as

Xj =
∑
h∈Ajk

βh→jεh +
∑

h∈Ajk∗

βh→jεh,

Xk =
∑
h∈Ajk

βh→kεh +
∑

h∈Akj∗

βh→kεh,

where Ajk = An(j,G)∩An(k,G), Ajk∗ = An(j,G)∩An(k,G)c and similarly for Akj∗ . We
have

E
[
Fk(Xk)1{Xj > x}

]
= E

Fk(Xk)1

Xj > x,
⋃

h∈An(j,G)

{
βh→jεh > x

}


+ E

Fk(Xk)1
{
Xj > x, max

h∈An(j,G)

{
βh→jεh

}
≤ x

} .
The second summand can be bounded by

P
[
Xj > x, max

h∈An(j,G)

{
βh→jεh

}
≤ x

]
= o{P(Xj > x)},

by Lemma A.4. For the first term, we use the inclusion-exclusion principle to write

1

Xj > x,
⋃

h∈An(j,G)

{
βh→jεh > x

} =
∑

h∈An(j,G)
1
{
Xj > x, βh→jεh > x

}
−

∑
h,h′∈An(j,G),h<h′

1
{
Xj > x, βh→jεh > x, βh′→jεh′ > x

}
+ ∆(x),

where ∆(x) contains terms of higher order interactions of the sets {βh→jεh > x}, h ∈
An(j,G). The probability

P
(
Xj > x, βh→jεh > x, βh′→jεh′ > x

)
≤ P

(
βh→jεh > x, βh′→jεh′ > x

)
= o{P(Xj > x)}.

The same holds for all finitely many terms in ∆(x). We further note that for all h ∈
An(j,G), by Lemma A.3,

P(Xj > x, βh→jεh > x) = P(βh→jεh > x) + o{P(Xj > x)}.
Putting everything together, we can rewrite

E
[
Fk(Xk)1{Xj > x}

]
=

∑
h∈An(j,G)

E
[
Fk(Xk)1

{
βh→jεh > x

}]
+ o{P(Xj > x)}

=
∑
h∈Ajk

E
[
Fk(Xk)1

{
βh→jεh > x

}]

+
∑

h∈Ajk∗

E
[
Fk(Xk)1

{
βh→jεh > x

}]
+ o{P(Xj > x)}.
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For h ∈ Ajk, let c = βh→j/βh→k > 0, and note that for every x > 0,

P
(
βh→jεh > x

)
≥ E

[
Fk(Xk)1

{
βh→jεh > x

}]
≥ E

[
Fk(Xk)1 {βh→kεh > cx,Xk > cx}

]
≥ Fk(cx)P (βh→kεh > cx,Xk > cx) .

Therefore, using Lemma A.3 and that Fk(cx)→ 1 as x→∞, it follows that

E
[
Fk(Xk)1

{
βh→jεh > x

}]
∼ P

(
βh→jεh > x

)
.

On the other hand, for h ∈ Ajk∗ , we have that Xk and εh are independent, and therefore

E
[
Fk(Xk)1

{
βh→jεh > x

}]
= 1

2P
(
βh→jεh > x

)
, x > 0.

Consequently,

Γjk = lim
x→∞

E
[
Fk(Xk) | Xj > x

]
= lim

x→∞

∑
h∈Ajk

P
(
βh→jεh > x

)
P(Xj > x) + lim

x→∞

1
2

∑
h∈Ajk∗

P
(
βh→jεh > x

)
P(Xj > x)

= 1
2 + 1

2
∑
h∈Ajk

lim
x→∞

P(βh→jεh > x)
P(Xj > x) = 1

2 + 1
2 lim
x→∞

∑
h∈Ajk

βαh→jP(εh > x)∑
h∈An(j,G) β

α
h→jP(εh > x)

= 1
2 + 1

2

∑
h∈Ajk

βαh→j∑
h∈An(j,G) β

α
h→j

,

where the second last equality follows from the fact that βh→jεh, h ∈ Ajk, are independent
regularly varying random variables, see Lemma A.1, and the last equality holds because
we assume that the noise variables εj, j ∈ V , have comparable tails; see Section 1.2.1.

A.2.2 Proof of Theorem 1.3
Proof. Recall that an(j, G) = An(j,G) \ {j} and define A12 = An(1, G) ∩ An(2, G).

(a). Suppose X1 causes X2, i.e., 1 ∈ an(2, G). This implies that An(1, G) ⊂ An(2, G) and
thus A12 = An(1, G) ⊂ An(2, G). By applying Lemma 1.2 we obtain Γ12 = 1 and
Γ21 ∈ (1/2, 1).

Conversely, suppose that Γ12 = 1 and Γ21 ∈ (1/2, 1). If Γ12 = 1 then the
numerator and denominator of the second term in Lemma 1.2 must be equal and
strictly positive. This implies that A12 = An(1, G) ∩ An(2, G) = An(1, G) 6= ∅.
It follows that An(1, G) ⊆ An(2, G), i.e., 1 ∈ An(2, G). At the same time, if
Γ21 ∈ (1/2, 1), then the numerator of the second term in Lemma 1.2 must be positive
and smaller than the denominator. This means that A12 6= ∅ and A12 = An(1, G)∩
An(2, G) ⊂ An(2, G). Thus, it follows that An(1, G) ⊂ An(2, G). Therefore, 1 ∈
an(2, G), that is, X1 causes X2.

(b). By symmetry, as case (a).
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(c). Suppose there is no causal link between X1 and X2, i.e., An(1, G) ∩ An(2, G) = ∅.
Then, A12 = An(1, G) ∩ An(2, G) = ∅ and by Lemma 1.2, we obtain Γ12 = Γ21 =
1/2.

Suppose now that Γ12 = Γ21 = 1/2. This means that the numerator of the second
term in Lemma 1.2 must be equal to zero. This implies that A12 = ∅ and therefore
An(1, G) ∩ An(2, G) = ∅, that is, there is no causal link between X1 and X2.

(d). Suppose there is a node j /∈ {1, 2} such that Xj is a common cause of X1 and X2, i.e.,
j ∈ an(1, G) and j ∈ an(2, G). Then A12 = An(1, G)∩An(2, G) is non-empty. Since
An(1, G) 6= An(2, G), it follows that A12 ⊂ An(i, G), for i = 1, 2. Thus, according
to Lemma 1.2 we have Γ12,Γ21 ∈ (1/2, 1).

Conversely, suppose that Γ12,Γ21 ∈ (1/2, 1). If Γ12 ∈ (1/2, 1), then the numerator
of the second term in Lemma 1.2 must be positive and smaller than the denominator.
This implies that A12 6= ∅ and A12 = An(1, G) ∩ An(2, G) ⊂ An(1, G). Similarly,
if Γ21 ∈ (1/2, 1), it follows that A21 = A12 = An(1, G) ∩ An(2, G) ⊂ An(2, G). This
implies that An(1, G) 6= An(2, G) and they are not disjoint. Therefore, there exists
a node j /∈ {1, 2} such that j ∈ an(1, G) and j ∈ an(2, G), i.e., Xj is a common
cause of X1 and X2.

A.2.3 Proof of Theorem 1.4
Proof. For simplicity we will write k = kn in the sequel. We only show the result for
Γ̂21, the proof for Γ̂12 follows by symmetry. Recall that each variable Xh, h ∈ V , can be
expressed as a weighted sum of the noise terms ε1, . . . , εp belonging to the ancestors of
Xh, as shown in (1.2.3). Therefore, we can write X1 and X2 as follows,

X1 =
∑
h∈A

βh→1εh +
∑
h∈A1

βh→1εh,

X2 =
∑
h∈A

βh→2εh +
∑
h∈A2

βh→2εh,

where A = A12 = An(1, G) ∩ An(2, G) and Aj = Ajk∗ = An(j, G) \ A, for j, k = 1, 2.
Thus, the estimator Γ̂21 can be rewritten as

Γ̂21 = 1
k

n∑
i=1

F̂1(Xi1) 1

Xi2 > X(n−k),2,
⋃

h∈An(2,G)

{
βh→2εih > X(n−k),2

}
+ 1
k

n∑
i=1

F̂1(Xi1) 1
{
Xi2 > X(n−k),2, max

h∈An(2,G)
βh→2εih ≤ X(n−k),2

}
= S1,n + S2,n.

(A.2.1)

Define the theoretical quantile function as

U(x) = F←(1− 1/x), x > 1. (A.2.2)

Recall that X(n−k),2 = F̂←2 (1 − k/n) is the (n − k)-th order statistic of X12, . . . , Xn2,
and as such an approximation to the theoretical quantile U2(n/k). Under the von Mises’
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condition (1.2.7) this convergence of the intermediate order statistics can be made rigorous
(de Haan and Ferreira, 2006, Theorem 2.2.1), namely

√
k

X(n−k),2

U2
(
n
k

) − 1

 d−→ N(0, 1/α2), n→∞, (A.2.3)

where α > 0 is the tail index of the variables in the SCM. This implies in particular that
X(n−k),2 →∞, n→∞. For any δ1 > 0 define the event

Bnδ1 =


∣∣∣∣∣X(n−k),2/U2

(
n

k

)
− 1

∣∣∣∣∣ < δ1

 , (A.2.4)

and note that by (A.2.3) it holds that P(Bnδ1)→ 1 as n→∞.
Since the noise terms εh are independent regularly varying random variables with

comparable tails, then, by Lemma A.1, we have

P(X2 > x) ∼

 ∑
h∈An(2,G)

βαh→2

 `(x)x−α =: c2`(x)x−α.

Furthermore, from Resnick (1987, Prop. 0.8) it holds, for all h ∈ An(2, G) and x > 0,

P{εh > xU2(t)} ∼ x−α(c2t)−1, t→∞, (A.2.5)

where U2 is defined as in (A.2.2) for the distribution function F2.
We treat the two terms in (A.2.1) separately. We can upper bound the absolute value

of the second term, for any τ, δ1 > 0, by

P(|S2,n| > τ) ≤ P(Bc
nδ1) + P

(
1
k

n∑
i=1

1
{
Xi2 > U2

(
n

k

)
(1− δ1),

max
h∈An(2,G)

βh→2εih ≤ U2

(
n

k

)
(1 + δ1)

}
> τ

)

where P(Bc
nδ1) → 0 as n → ∞ by (A.2.3). The limit superior of the second term, as

n→∞, can be bounded with Markov’s inequality by

lim
n→∞

n

τk
P

{
X2 > (1− δ1)U2

(
n

k

)
, max
h∈An(2,G)

βh→2εh ≤ (1 + δ1)U2

(
n

k

)}

≤ lim
n→∞

1
τ

P{X2 > U2

(
n

k

)}−1 P{X2 > (1− δ1)U2

(
n

k

)}

− P
{
X2 > (1 + δ1)U2

(
n

k

)
, max
h∈An(2,G)

βh→2εh > (1 + δ1)U2

(
n

k

)}
= (1− δ1)−α − (1 + δ1)−α

τ
.

The last equality holds because X2 is regularly varying with index α and because, by
Lemma A.4, we have

P
(
X2 > x, max

h∈An(2,G)
βh→2εh > x

)
∼ P(X2 > x), x→∞.
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Since δ1, τ > 0 are arbitrary, it follows that S2,n = oP (1).
For the first term, we use the inclusion-exclusion principle to write

S1,n =
∑

h∈An(2,G)

1
k

n∑
i=1

F̂1(Xi1)1
{
Xi2 > X(n−k),2, βh→2εih > X(n−k),2

}

−
∑

h,h′∈An(2,G),h<h′

1
k

n∑
i=1

F̂1(Xi1)1
{
Xi2 > X(n−k),2, βh→2εih > X(n−k),2,

βh′→2εih′ > X(n−k),2
}

+ 1
k

n∑
i=1

F̂1(Xi1)∆i

(
X(n−k),2

)
= T1,n + T2,n + T3,n,

where ∆i(X(n−k),2) contains terms of higher order interactions of the sets {βh→2εih >
X(n−k),2}, h ∈ An(2, G), i = 1, . . . , n. First, we show that the terms T2,n and T3,n are
oP (1). Considering T2,n, for each h, h′ ∈ An(2, G), h < h′, define

T
(h,h′)
2,n = 1

k

n∑
i=1

F̂1(Xi1)1
{
Xi2 > X(n−k),2, βh→2εih > X(n−k),2,

βh′→2εih′ > X(n−k),2
}
.

We can upper bound its absolute value, for any τ, δ1 > 0, by

P(|T (h,h′)
2,n | > τ) ≤ P(Bc

nδ1)

+ P
(

1
k

n∑
i=1

1
{
βh→2εih > (1− δ1)U2

(
n

k

)
, βh′→2εih′ > (1− δ1)U2

(
n

k

)})
.

By Markov’s inequality,

lim sup
n→∞

P(|T (h,h′)
2,n | > τ) ≤ lim

n→∞
P(Bc

nδ1)

+ lim
n→∞

n

τk
P
{
βh→2εh > (1− δ1)U2

(
n

k

)}
P
{
βh′→2εh′ > (1− δ1)U2

(
n

k

)}

= lim
n→∞

k(1− δ1)−2αp2hp2h′

nτ
= 0,

where in the last line we used property (A.2.5) and the fact that k/n→ 0 as n→∞, and
ph2, p2h′ are defined as

p2h = βαh→2
c2

, h ∈ An(2, G). (A.2.6)

Since δ1, τ are arbitrary, putting together the finitely many terms h < h′ where h, h′ ∈
An(2, G), it follows that T2,n

P−→ 0. Using a similar argument as the one for T2,n, one can
show that T3,n

P−→ 0.
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We want to show that T1,n
P−→ Γ21. Rewrite

T1,n =
∑
h∈A

1
k

n∑
i=1

F̂1(Xi1)1
{
βh→2εih > X(n−k),2

}

+
∑
h∈A2

1
k

n∑
i=1

F̂1(Xi1)1
{
βh→2εih > X(n−k),2

}

−
∑

h∈An(2,G)

1
k

n∑
i=1

F̂1(Xi1)1
{
βh→2εih > X(n−k),2, Xi2 ≤ X(n−k),2

}
= U1,n + U2,n + U3,n.

Using an argument similar to the one for S2,n on page 68, one can show that U3,n
P−→ 0.

Regarding U1,n, for each h ∈ A, define

U
(h)
1,n = 1

k

n∑
i=1

F̂1(Xi1)1
{
βh→2εih > X(n−k),2

}
.

Note that, for h ∈ A, we have that both βh→2 > 0 and βh→1 > 0, therefore we can bound

F̂1
(
cX(n−k),2

)
V (h)
n −W (h)

n ≤ U
(h)
1,n ≤ V (h)

n , (A.2.7)

where c = βh→1/βh→2 > 0 and

Vn = V (h)
n = n

k

1− F̂εh

(
X(n−k),2

βh→2

) ,
Wn = W (h)

n = 1
k

n∑
i=1

1
{
βh→1εih > cX(n−k),2, Xi1 ≤ cX(n−k),2

}
.

(A.2.8)

We show first that Vn converges in probability to p2h, defined in (A.2.6). This is motivated
by the fact that Vn is the empirical version of

tP
{
βh→2εh > U2(t)

}
→ βh→2/c2 = p2h, t→∞,

where the limit follows from property (A.2.5). We will study the asymptotic properties
of Vn. For x > 0 define

vn(x) = n

k

1− F̂εh

xU2
(
n
k

)
βh→2


 = 1

k

n∑
i=1

1
{
βh→2εih > xU2

(
n

k

)}
,

which is a nonincreasing function of x. Observe that on the set Bnδ1 defined in (A.2.4),
we may bound the random variable Vn by

vn(1 + δ1) ≤ Vn = vn

X(n−k),2

U2
(
n
k

)
 ≤ vn(1− δ1). (A.2.9)

We further compute the limits as n→∞

E{vn(x)} = n

k
P
[
βh→2εh > xU2

(
n

k

)]
→ p2hx

−α,

V
{
vn(x)

}
= n

k2P
[
βh→2εh > xU2

(
n

k

)]
P
[
βh→2εh ≤ xU2

(
n

k

)]
= O(1/k)→ 0.
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An application of Chebyshev’s inequality yields

vn(1 + δ1) P−→ p2h(1 + δ1)−α, vn(1− δ1) P−→ p2h(1− δ1)−α, n→∞. (A.2.10)

For some τ > 0, choose δ1 > 0 such that p2h(1+δ1)−α > p2h−τ and p2h(1−δ1)−α < p2h+τ .
Then with (A.2.9), (A.2.10) and the fact that P(Bc

nδ1)→ 0 for Bnδ1 in (A.2.4), we conclude

P(|Vn − p2h| > τ) ≤ P(Bc
nδ1) + P{vn(1 + δ1) < p2h − τ}

+ P{vn(1− δ1) > p2h + τ} → 0, n→∞,
(A.2.11)

that is, Vn converges in probability to p2h, as n→∞.
Furthermore, using (A.2.7) we will now show

F̂1
(
cX(n−k),2

)
P−→ 1. (A.2.12)

Indeed, for any τ, δ1 > 0, as n→∞

P
{∣∣∣∣F̂1

(
cX(n−k),2

)
− 1

∣∣∣∣ > τ

}
≤ P

(
Bc
nδ1

)
+ P

F̂1

{
c(1 + δ1)U2

(
n

k

)}
> 1 + τ


+ P

F̂1

{
c(1− δ1)U2

(
n

k

)}
< 1− τ

→ 0,

since F̂1(x) converges in probability to F1(x) for all x ∈ R, and U2(n/k)→∞, as n→∞.
Moreover, with a similar argument as for S2,n, one can show that Wn defined in (A.2.8)
converges in probability to 0, as n→∞.

Putting everything together, using (A.2.7), (A.2.11) and (A.2.12) we conclude that
U

(h)
1,n

P−→ p2h, h ∈ A, and thus

U1,n
P−→

∑
h∈A

p2h =
∑
h∈A β

α
h→2∑

h∈An(2,G) β
α
h→2

. (A.2.13)

Considering the term U2,n, for each h ∈ A2, define

U
(h)
2,n = 1

k

n∑
i=1

F̂1(Xi1)1
{
βh→2εih > X(n−k),2

}
.

On the event Bnδ1 , we can bound U
(h)
2,n by

u2,n(1 + δ1) ≤ U
(h)
2,n ≤ u2,n(1− δ1),

where we let, for all x > 0,

u2,n(x) = 1
k

n∑
i=1

F̂1(Xi1)1
{
βh→2εih > xU2

(
n

k

)}
.

Since X1 is independent of εh, for h ∈ A2, the values in the sum can be seen as M(x) =
Mn(x) random samples out of {1/n, . . . , 1} without replacement, where M(x) is Binomial
with success probability

P
{
βh→2εh > xU2

(
n

k

)}
∼ kp2hx

−α

n
, n→∞.
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Let Zni be random samples out of {1/n, . . . , 1} without replacement, for all i = 1, . . . , n,
n ∈ N. Then u2,n(x) has the same distribution as

1
k

M(x)∑
i=1

Zni.

By a similar argument as in (A.2.10) the distribution of M(x) satisfies for any fixed
x ∈ (0,∞)

M(x)
m(x)

P−→ 1, n→∞, (A.2.14)

where m(x) = mn(x) = dkp2hx
−αe. Thus, for any δ2 > 0 and any x > 0, the probability

of the event

Cnδ2,x =


∣∣∣∣∣M(x)
m(x) − 1

∣∣∣∣∣ < δ2


converges to 1 as n→∞. Consider the quantity

ũ2,n(x) = 1
k

m(x)∑
i=1

Zni. (A.2.15)

Theorem 5.1 in Rosén (1965) states that the limit in probability of this sum of samples
without replacement is the same as the corresponding sum of samples with replacement.
Therefore, for any x ∈ (0,∞), we have the convergence in probability

ũ2,n(x) = m(x)
k

1
m(x)

m(x)∑
i=1

Zni
P−→ 1

2p2hx
−α. (A.2.16)

For τ > 0, choose δ1, δ2 > 0 small enough such that
p2h(1− δ1)−α(1 + δ2)/2 < p2h/2 + τ. (A.2.17)

Then we can bound the probability

lim sup
n→∞

P
(
U

(h)
2,n − p2h/2 > τ

)
≤ lim sup

n→∞
P
{
u2,n(1− δ1) > p2h/2 + τ

}
+ P(Bc

nδ1)

≤ lim
n→∞

P
[
ũ2,n{(1− δ1)(1 + δ2)−1/α} > p2h/2 + τ

]
+ P(Bc

nδ1) + P(Cc
nδ2,1−δ1)

= 0,
(A.2.18)

since P(Bc
nδ1) and P(Cc

nδ2,1−δ1) converge to 0 as n→∞, and the last term converges to 0
as a consequence of (A.2.16) and (A.2.17). Similarly, we can show that

lim sup
n→∞

P
(
U

(h)
2,n − p2h/2 < −τ

)
= 0,

and since τ > 0 is arbitrary, U (h)
2,n

P−→ p2h/2, for h ∈ A2. Therefore,

U2,n
P−→

∑
h∈A2

p2h

2 = 1
2

∑
h∈A2 β

α
h→2∑

h∈An(2,G) β
α
h→2

,

and Γ̂21
P−→ Γ21.
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A.2.4 Proof of Proposition 1.5
Proof. Let s ∈ S := {1, . . . , p} and denote by is ∈ V the node chosen by the algorithm at
step s. Denote by

Hs =

∅, s = 1,
{i1, . . . , is−1}, s > 1,

the set of nodes chosen by the algorithm before step s. Let Gs = (Vs, Es) be the subgraph
of G obtained by removing the nodes Hs that are already chosen, i.e., Vs = V \ Hs and
Es = E ∩ (Vs × Vs). Furthermore, define the score minimized by the algorithm to choose
the node at step s,

M
(s)
i = max

j∈Vs\{i}
Γji, ∀i ∈ Vs.

We want to show that EASE is a procedure that, for all s ∈ S, satisfies the statement

Ξ(s) :=
(
is ∈ arg min

i∈Vs

M
(s)
i =⇒ an(is, G) ⊆ Hs

)
. (A.2.19)

We use strong induction. Namely, we prove that if Ξ(s′) holds for all natural numbers
s′ < s, then Ξ(s) holds, too.

Fix s ∈ S and suppose that for all s′ ∈ S, with s′ < s, Ξ(s′) holds. Assume ϕ :=
is ∈ arg mini∈Vs M

(s)
i and an(ϕ,G) 6⊆ Hs. Then, there exists a node j ∈ Vs such that

j ∈ an(ϕ,G), and by Theorem 1.3, Γjϕ = 1. It follows M (s)
ϕ = 1.

Also, since Gs is a DAG, there exists a node ` ∈ Vs such that an(`,Gs) = ∅. If
Ξ(s′) holds for every natural number s′ < s, then an(`,G) ⊆ Hs. Suppose not. Then,
there exists a node j ∈ Vs such that j ∈ an(`,G). Note that since j ∈ an(`,G) and
j /∈ an(`,Gs), there exists a directed path from j to ` in G that is absent in Gs. Thus,
there exists a node h ∈ Hs that lies on such path, and it follows that j ∈ an(h,G), which
is a contradiction. Since an(`,G) ⊆ Hs, by Theorem 1.3 it holds M (s)

` < 1 = M (s)
ϕ , which

is a contradiction.
Since s ∈ S was arbitrary, we have proved that Ξ(s) holds for all s ∈ S. Furthermore,

note that Ξ(1) holds as a special case of the argument above. Hence, we conclude that,
for all s′, s ∈ S,

s′ < s =⇒ is /∈ an(is′ , G)

and therefore π(is) = s is a causal order of G.

A.2.5 Proof of Proposition 1.6
Proof. If π̂ 6∈ ΠG, then there exists a node i ∈ V that is chosen before one of its ancestors
u ∈ an(i, G), i.e., π̂(i) < π̂(u). Therefore, there exists a non-empty set Ṽ ⊆ V , with
i, u ∈ Ṽ , such that

i ∈ arg min
i′∈Ṽ

max
u′∈Ṽ \{i′}

Γ̂u′i′ . (A.2.20)
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Furthermore, since G is a DAG, there exists a node j ∈ Ṽ with no ancestors in Ṽ . Let
v ∈ Ṽ \ {j}, and note that v /∈ An(j, G). Thus, by (A.2.20), it follows that Γ̂vj − Γ̂ui ≥ 0.
Define ∆̂ij := |Γ̂ij − Γij| and note that the event Γ̂vj − Γ̂ui ≥ 0 can be bounded by{

∆̂vj ≥
Γui − Γvj

2

}
∪
{

∆̂ui ≥
Γui − Γvj

2

}
⊆
{

∆̂vj ≥
1− η

2

}
∪
{

∆̂ui ≥
1− η

2

}
,

where Γui = 1 because u ∈ an(i, G), and Γvj ≤ η < 1. Therefore,

P(π̂ 6∈ ΠG) ≤
∑

j∈V, v /∈An(j,G)
P
(

∆̂vj >
1− η

2

)
+

∑
i∈V, u∈an(i,G)

P
(

∆̂ui >
1− η

2

)

≤ p2 max
i,j∈V :i 6=j

P
(

∆̂ij >
1− η

2

)
.

This completes the proof of Proposition 1.6.

A.2.6 Proof of Lemma 1.8
Proof. Recall that each variable Xh, h ∈ V , can be expressed as a weighted sum of the
noise terms ε1, . . . , εp belonging to the ancestors of Xh, as shown in (1.2.3). Therefore,
we can write Xj and Xk as follows,

Xj =
∑
h∈Ajk

βh→jεh +
∑

h∈Ajk∗

βh→jεh,

Xk =
∑
h∈Ajk

βh→kεh +
∑

h∈Akj∗

βh→kεh,

where Ajk = An(j,G) ∩ An(k,G), Ajk∗ = An(j,G) ∩ An(k,G)c and similarly for Akj∗ .
We treat the two terms of (1.4.2) separately. Consider the first term,

Ψ+
jk = lim

x→∞

1
2E

[
σ(Fk(Xk)) | Xj > x

]
, j, k ∈ V.

Since Xj, j ∈ V , are regularly varying with index α > 0, using similar arguments as in
Lemma 1.2, we can write

E[σ(Fk(Xk))1{Xj > x}]

=
∑

h∈An(j,G)
E
[
σ(Fk(Xk))1

{
βh→jεh > x

}]
+ o{P(Xj > x)}

=
∑
h∈Ajk

E
[
σ(Fk(Xk))1

{
βh→jεh > x

}]

+
∑

h∈Ajk∗

E
[
σ(Fk(Xk))1

{
βh→jεh > x

}]
+ o{P(Xj > x)}.

(A.2.21)

Recall that σ is defined as

σ(x) = |2x− 1| =

2x− 1, x ≥ 1/2
1− 2x, x < 1/2,

and that 0 ≤ σ(Fk(Xk)) < 1, k ∈ V .
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Consider the summands in (A.2.21) where h ∈ Ajk. We distinguish two cases. When
the ratio c = βh→k/βh→j > 0, we can bound the summand

P
(
βh→jεh > x

)
≥ E

[
σ(Fk(Xk))1

{
βh→jεh > x

}]
≥ E

[
σ(Fk(Xk))1 {βh→kεh > cx,Xk > cx}

]
≥ σ(Fk(cx))P (βh→kεh > cx,Xk > cx)
= σ(Fk(cx))

[
P (βh→kεh > cx)− P (βh→kεh > cx,Xk ≤ cx)

]
= P

(
βh→jεh > x

)
+ o{P(Xj > x)}.

The last equality follows from Lemma A.3 and since σ(Fk(cx)) → 1 as x → ∞. When
the ratio c = βh→k/βh→j < 0, we obtain

P
(
βh→jεh > x

)
≥ E

[
σ(Fk(Xk))1

{
βh→jεh > x

}]
≥ E

[
σ(Fk(Xk))1 {βh→kεh < cx,Xk < cx}

]
≥ σ(Fk(cx))P (βh→kεh < cx,Xk < cx)
= σ(Fk(cx))

[
P (βh→kεh < cx)− P (βh→kεh < cx,Xk ≥ cx)

]
= P

(
βh→jεh > x

)
+ o{P(Xj > x)},

where the third inequality holds because, as x→∞, Fk(Xk) < Fk(cx) implies σ(Fk(Xk)) >
σ(Fk(cx)).

On the other hand, for all the summands in (A.2.21) where h ∈ Ajk∗ we have that Xk

and εh are independent. Therefore,

E
[
σ(Fk(Xk))1

{
βh→jεh > x

}]
= E

[
|2Fk(Xk)− 1|

]
P
(
βh→jεh > x

)
= 1

2P
(
βh→jεh > x

)
.

Consequently,

Ψ+
jk = lim

x→∞

1
2E

[
σ(Fk(Xk)) | Xj > x

]
= lim

x→∞

1
2
∑
h∈Ajk

P
(
βh→jεh > x

)
P(Xj > x) + lim

x→∞

1
4

∑
h∈Ajk∗

P
(
βh→jεh > x

)
P(Xj > x)

= 1
4 + 1

4
∑
h∈Ajk

lim
x→∞

P(βh→jεh > x)
P(Xj > x) = 1

4 + 1
4

∑
h∈Ajk

|βh→j|αc+
hj`(x)x−α∑

h∈An(j,G) |βh→j|αc+
hj`(x)x−α

= 1
4 + 1

4

∑
h∈Ajk

c+
hj|βh→j|α∑

h∈An(j,G) c
+
hj|βh→j|α

.

Similarly, the second term can be shown to be

Ψ−jk = 1
4 + 1

4

∑
h∈Ajk

c−hj|βh→j|α∑
h∈An(j,G) c

−
hj|βh→j|α

.

Putting everything together yields the desired form of Ψjk = Ψ+
jk + Ψ−jk.
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A.3 Example of the EASE algorithm
Consider the DAG G in Figure A.1, with vertex set V = {1, 2, 3, 4}. The set of causal
orders of G is ΠG = {(2, 1, 4, 3), (2, 1, 3, 4), (2, 3, 1, 4)}. In Figure A.2, we display the
state-space tree of the EASE algorithm, i.e., the set of states that the algorithm can visit
to find a causal order π of G. Each state represents the status of the vector π−1 during
the algorithm evaluation. A state is red if all the paths below it lead to wrong causal
order. The green states represent the causal orders of G.

2
1 34

Figure A.1: DAG G.

1 2
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2134
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Figure A.2: Extremal ancestral search (EASE) for the DAG shown in Figure A.1.
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A.4 Experimental settings for the simulation study
The parameters of the simulation are the following.

– Distribution: Student’s t, with degrees of freedom α ∈ {1.5, 2.5, 3.5}.

– Number of observations: n ∈ {500, 1000, 10000}.

– Number of variables: p ∈ {4, 7, 10, 15, 20, 30, 50}.
The settings that we consider are,
– Linear SCM,

– Linear SCM with hidden confounders,

– Nonlinear SCM,

– Linear SCM and uniform transformation of each variable.
For each combination of n, p, and α and each setting, we generate nexp = 50 random

SCMs. Each SCM is built as follows.
1. Generate a random DAG.

(a) Take a random permutation π of the nodes V = {1, . . . , p} that defines the
causal order.

(b) For each i ∈ V such that π(i) > 1, sample the number of parents
npa ∼ Bin(π(i)− 1, q),

from a binomial distribution. We set q = min{5/(p − 1), 1/2} so that, on
average, there are 2.5 edges per node, when p > 10.

(c) Sample without replacement npa from {j ∈ V : π(j) < π(i)} and name the
resulting set pa(i).

2. Sample uniformly from {−0.9,−0.1} ∪ {0.1, 0.9} the coefficients βij, where i ∈ V
and j ∈ pa(i, G).

3. In the case of hidden confounders,

(a) Sample the number of confounding variables,

nconf ∼ Bin
(
p(p− 1)

2 , q

)
,

from a binomial distribution. We set q = 2/(3p− 3) so that, on average, there
is one hidden confounder for every three nodes.

(b) Sample without replacement nconf unordered pairs from
{
{i, j} : i, j ∈ V

}
and

name the resulting set C.
(c) Update the parents of each node i as pa(i) := pa(i) ∪ Ci, where Ci ⊆ C is

the set of hidden confounders affecting node i ∈ V . Similarly, for each hidden
confounder c ∈ C, set pa(c) = ∅.

(d) Sample uniformly from {−0.9,−0.1} ∪ {0.1, 0.9} the coefficients βic, where
i ∈ V and c ∈ Ci.

4. Let Ṽ = V ∪C1. For all i ∈ Ṽ , sample n i.i.d. copies of noise εi ∼ Student’s t with df =
1If there are no hidden confounders, then C = ∅.
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α.

5. For each node i ∈ Ṽ , generate

Xi :=
∑

j∈pa(i)
βij f(Xj) + εi, where

(a) in case of linear SCM, f(Xj) = Xj,
(b) in case of nonlinear SCM, f(Xj) = Xj 1{F̂j(Xj) > 0.95}, where F̂j is the

empirical cdf of Xj.

6. In case of uniform margins, transform each variable by Xi := F̂i(Xi), where F̂i is
the empirical cdf of Xi, i ∈ Ṽ .
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A.5 Additional Figures and Tables
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Figure A.3: The figure refers to Section 1.5.1. It shows the structural intervention distance
(SID) of the EASE algorithm for different fractional exponents ν ∈ [0.2, 0.7] of kn = bnνc
and different tail indices α ∈ {1.5, 2.5, 3.5}. Each point represents the SID measure
averaged over 10 random samples for different sample sizes n ∈ {500, 1000, 10000} and di-
mensions p ∈ {4, 7, 10, 15, 20, 30, 50} in a linear SCM. In the experiments of Section 1.5.1,
we set kn = bn0.4c.
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Figure A.4: The figure refers to Section 1.5.3. It shows the robustness of the structural
intervention distance (SID) for varying fractional exponents ν ∈ [0.2, 0.7] of kn = bnνc.
Each point represents an average over 50 SID evaluations for the EASE algorithm, after
bootstrapping the original dataset. The shaded interval corresponds to the 90% bootstrap
confidence interval.
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Figure A.5: The figure refers to Section 1.5.2. It shows the variability of the estimated
coefficients Ψ̂ for different fractional exponents ν ∈ [0.2, 0.7] of kn = bnνc. Each point
represents the estimates of Ψ̂ based on the full dataset. The shaded intervals correspond
to the 90% bootstrap confidence intervals over 1000 repetitions.
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Figure A.6: The figure refers to Section 1.5.1. It shows the SID averaged over 50 simu-
lations, for each method, setting, sample size n and dimension p, when the tail index is
α = 2.5. Each row of the figure corresponds to one setting. In order, the settings are:
(1) Linear SCM; (2) Linear SCM with hidden confounders; (3) Nonlinear SCM; (4) Linear
SCM where each variable is transformed to a uniform margin.
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Figure A.7: The figure refers to Section 1.5.1. It shows the SID averaged over 50 simu-
lations, for each method, setting, sample size n and dimension p, when the tail index is
α = 3.5. Each row of the figure corresponds to one setting. In order, the settings are:
(1) Linear SCM; (2) Linear SCM with hidden confounders; (3) Nonlinear SCM; (4) Linear
SCM where each variable is transformed to a uniform margin.
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Figure A.8: The figure refers to Section 1.5.3. It represents the map of the upper Danube
basin. The plot is created with the ggmap R package developed by Kahle and Wickham
(2013). The background is taken from maps.stamen.com.

●

●

●
●

●

●

●
●

●

●

●●

●

●
●●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

n = 500 n = 1000 n = 10000

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

−2
−1

0
1

p

lo
g 1

0(
T

im
e)

● ● ● ●EASE Pairwise LiNGAM ICA−LiNGAM Rank PC

Figure A.9: The figure refers to Section 1.5.1. It shows the base-10 logarithm of the
computational time (in seconds) averaged over 10 simulations, for each method, sample
size n and dimension p.
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maps.stamen.com
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Table A.5.1: The table refers to Section 1.5.1. It displays the average SID and the stan-
dard error (SE) over 50 simulations, for ICA-LiNGAM and Pairwise LiNGAM. For each
dimension p we simulate n = 10000 observations from a non-linear SCM with Student’s-t
noise with α = 3.5 degrees of freedom (see Section 1.5.1). We run each method both
on the full dataset (‘Full dataset’) and on the partial dataset, where we keep only the
observations in the tails of the distribution (‘Keep tails’). As dimension p increases, the
number of extreme observations in all their coordinates decreases exponentially. There-
fore, for a given dimension p, we say that an observation x ∈ Rp lies in the tails of the
distribution if at least b√pc of its coordinates are below (or above) the 10% (or 90%)
quantile.

Full dataset Keep tails
SID SE SID SE

p = 10 0.236 0.029 0.110 0.021
p = 20 0.246 0.022 0.150 0.017
p = 30 0.231 0.017 0.148 0.014ICA-LiNGAM

p = 50 0.268 0.014 0.216 0.012

p = 10 0.090 0.024 0.003 0.001
p = 20 0.064 0.013 0.003 0.001
p = 30 0.026 0.007 0.005 0.003Pairwise LiNGAM

p = 50 0.019 0.004 0.006 0.002
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Figure A.10: The figure refers to Section 1.5.1. It shows the average SID of the Rank PC
algorithm over 50 simulations for different significance levels of the independent test. For
each dimension p we simulate n = 1000 observations from a linear SCM with Student’s-t
noise with α = 3.5 degrees of freedom (see Section 1.5.1). For comparison, we also display
the SID associated with random guessing.

A.6 Financial application
Starting from the financial application of Section 1.5.2, we study the dynamic evolution of
the Ψ̂ coefficient across time. By looking at the time series of the EURCHF in Figure A.11,
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we notice two periods of extremely high positive and negative returns, namely, August
2011 and January 2015. The second event was due to an unexpected decision of the Swiss
National Bank (SNB) to remove the peg of 1.20 Swiss francs per Euro.
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Figure A.11: Daily returns of the EURCHF exchange rate. The red sections represent the
two major turmoil events. They occurred, respectively, in the month of August 2011 and
in January 2015. The latter event was caused by the unexpected decision of the Swiss
National Bank (SNB) to remove the peg of 1.20 Swiss francs per Euro.

The idea is to estimate the Ψ̂ coefficients between the EURCHF and the three stocks on
a rolling window of 1500 days. In this case, we use a threshold k = 10 which corresponds
approximately to a fractional exponent ν = 0.3, where we define k = bnνc and n is the
number of observations in the sample. In Figure A.12, we notice that during turmoil
periods, highlighted in red, the Ψ̂ coefficient is higher in the direction that goes from the
EURCHF to the stocks. This is an example where the causal structure becomes clearer
during extreme events. It is also interesting to observe that the Ψ̂ coefficient is quite
stable during calmer market periods. For example, the stable black lines between 2012
and 2015 correspond to the currency peg maintained by the SNB. As a last note, the drop
in the black lines in mid 2017 is due to the fact that the extreme event of 2011 ‘exits’ the
rolling window.
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Figure A.12: Estimated coefficients Ψ̂ on a rolling window of 1500 days. The threshold
used to estimate the coefficient is k = 10.



Appendix B

Extremal Random Forests

B.1 Proof of Theorem 2.4
Given the data generating process of Assumption 2.1 in the main text, define the random
variable Z = (Y −QX(τ0))+. We then have the stochastic representation

(X,Z, 1{Z > 0}) d= (X, V P, P ), (B.1.1)

where V follows a GPD with parameter vector θ(X), and P ∼ Bernoulli(1 − τ0), inde-
pendent of X and V . Similarly, for the training data (Xi, Yi) we may use a an analogous
representation with (Xi, ViPi, Pi) as in (B.1.1), i = 1, . . . , n. With this we can rewrite the
weighted (negative) log-likelihood function in (2.3.3) as

Ln(θ;x) =
n∑
i=1

wn(x,Xi)`θ(Vi)Pi,

Moreover, for a fixed predictor value x ∈ Int X let V ∗ denote a GPD with parameter
vector θ(x) and define L(θ;x) = E[`θ(V ∗)P ], where θ ∈ (0,∞)2. To prove our result we
rely on Theorem 5.7 of van der Vaart (1998), which we state here adapted to our setting.

Theorem B.1. Let θ 7→ Ln(θ;x) be random functions, and let θ 7→ L(θ;x) be a fixed
function such that, for x ∈ Int X , it holds

sup
θ∈Θ
|Ln(θ;x)− L(θ;x)| P→ 0, (B.1.2)

L(θ(x);x) < inf
{
L(θ;x) : ‖θ − θ(x)‖2 ≥ δ, θ ∈ Θ

}
, for all δ > 0. (B.1.3)

Then any sequence of estimators θ̂(x) with Ln(θ̂(x);x) ≤ Ln(θ(x);x) + oP (1) converges in
probability to θ(x).

We can now prove our Theorem 2.4.

Proof of Theorem 2.4. First, notice that θ(x) ∈ θ(X ) ⊂ Θ, where Θ is compact. There-
fore, from (2.3.4) in the main text, we have that Ln(θ̂(x);x) ≤ Ln(θ(x);x) for all n > 0.
Furthermore, a standard argument using Kullback–Leibler divergence implies the true
parameter θ(x) is a minimizer for θ 7→ L(θ;x). Since the GPD is identifiable, the true pa-
rameter is a unique minimizer, satisfying condition (B.1.3). Moreover, from Lemma B.2,
condition (B.1.2) is satisfied.

Therefore, from Theorem B.1, the estimator θ̂(x)→ θ(x) in probability as n→∞.
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Lemma B.2. Under the assumptions of Theorem 2.4, it holds that supθ∈Θ|Ln(θ;x) −
L(θ;x)| P→ 0.

Proof. We have that

Ln(θ;x) =
n∑
i=1

wn(x,Xi)`θ(Vi)Pi

=
n∑
i=1

wn(x,Xi)`θ(V ∗i )Pi +
n∑
i=1

wn(x,Xi)
(
`θ(Vi)− `θ(V ∗i )

)
Pi

= S1,n(θ) + S2,n(θ),

where we couple the random variables Vi and V ∗i through Vi = F−1
θ(Xi)(Ui), V

∗
i = F−1

θ(x)(Ui),
Ui

iid∼ Unif[0, 1], and F−1
θ is the inverse of the GPD function with parameter θ ∈ Θ. By

Lemma B.3 and B.7, the claim follows.

Lemma B.3. Under the assumptions of Theorem 2.4, it holds that supθ∈Θ |S1,n(θ) −
L(θ;x)| P→ 0.

Proof. Corollary 2.2 of Newey (1991) provides sufficient conditions for uniform conver-
gence.

1. (Compactness): Θ is compact.

2. (Pointwise convergence): For each θ ∈ Θ, S1,n(θ)− L(θ;x) = oP (1).

3. (Stochastic Equicontinuity): There exists Cn = OP (1) such that for all θ, θ′ ∈ Θ,
|S1,n(θ)− S1,n(θ′)| ≤ Cn‖θ − θ′‖2.

4. (Continuity): The map θ 7→ L(θ;x) is continuous.

Condition 1 holds by assumption. The remaining conditions are shown in Lem-
mas B.4, B.5, and B.6, respectively.

Lemma B.4. For each θ ∈ Θ, it holds that S1,n(θ)− L(θ;x) = oP (1).

Proof. For each θ ∈ Θ, recall that L(θ;x) = E[`θ(V ∗)P ], where V ∗ ∼ GPD(θ(x)). Fur-
thermore, we have that

S1,n(θ) =
n∑
i=1

wn(x,Xi)`θ(V ∗i )Pi = 1
B

B∑
b=1

n∑
i=1

wn,b(x,Xi)`θ(V ∗i )Pi = 1
B

B∑
b=1

Tn,b(x, θ),

where Tn,b(x, θ) is the output of a regression gradient tree (Athey et al., 2019) with
response `θ(V ∗i )Pi independent of wn,b(x,Xi), i = 1, . . . , n. Consider a tree Tn,b(x, θ),
b = 1, . . . , B, of the generalized random forest. Its expectation writes

E
(
Tn,b(x, θ)

)
=

n∑
i=1

E
(
wn,b(x,Xi)`θ(V ∗i )Pi

)
=

n∑
i=1

E
(
wn,b(x,Xi)

)
E
(
`θ(V ∗i )Pi

)
= E


n∑
i=1

wn,b(x,Xi)

E
(
`θ(V ∗)P

)
= E

(
`θ(V ∗)P

)
= L(θ;x),

(B.1.4)
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since the weights sum to one. Therefore, E
(
S1,n(θ)

)
= L(θ;x). Concerning the variance

of the thinning `θ(V ∗)P we have that

V
(
`θ(V ∗)P

)
= E

(
`θ(V ∗)2

)
E(P 2)− E

(
`θ(V ∗)

)2 E (P )2 < +∞, (B.1.5)

since P is a Bernoulli variable and `θ(V ∗) has exponential tail. Therefore, the variance of
Tn,b(x, θ) writes

V
(
Tn,b(x, θ)

)
= E

{(
Tn,b(x, θ)− L(θ;x)

)2
}

= E


 n∑
i=1

wn,b(x,Xi)
(
`θ(V ∗i )Pi − L(θ;x)

)2


= E

 n∑
i=1

wn,b(x,Xi)2 (`θ(V ∗i )Pi − L(θ;x)
)2

+
∑
i 6=j

wn,b(x,Xi)wn,b(x,Xj)(`θ(V ∗i )Pi − L(θ;x))(`θ(V ∗j )Pj − L(θ;x))


= V
(
`θ(V ∗)P

)
E

 n∑
i=1

wn,b(x,Xi)2

 ≤ V(`θ(V ∗)P ) < +∞,

(B.1.6)

where the fourth equality holds because (V ∗i , Pi) are i.i.d. , the second last inequality holds
because 0 ≤ wn,b(x,Xi) ≤ 1, and the last inequality follows from (B.1.5). Using results
about U -statistics (Hoeffding, 1948), Wager and Athey (2018) show that the variance of
a forest is at most s/n times the variance of a tree, that is

lim sup
n→∞

n

s

V
(
S1,n(θ)

)
V
(
Tn,b(x, θ)

) ≤ 1. (B.1.7)

where s < n denotes the subsample size. From Assumption 2.3, we have that s/n → 0,
therefore (B.1.6) and (B.1.7) imply that V

(
S1,n(θ)

)
→ 0 as n → 0. The result follows

from Markov’s inequality.

Lemma B.5. There exists Cn = OP (1) such that for all θ, θ′ ∈ Θ, |S1,n(θ)− S1,n(θ′)| ≤
Cn‖θ − θ′‖2.

Proof. The negative log-likelihood θ 7→ `θ(z) is defined for each z ≥ 0 and θ ∈ (0,∞)2 as

`θ(z) = log σ +
(

1 + 1
ξ

)
log

(
1 + ξ

σ
z

)
.

Therefore, its partial derivatives can be bounded by
∣∣∣∂ξ`θ(z)

∣∣∣ ≤ 1
ξ2 log

(
1 + ξ

σ
z

)
+

1 + 1
ξ

ξ
,

∣∣∂σ`θ(z)
∣∣ ≤ 1

σ
+

1 + 1
ξ

σ
,

(B.1.8)

for any θ = (σ, ξ) ∈ (0,∞)2. The bounds from (B.1.8) are continuous on the compact set
Θ ⊂ (0,∞)2, and therefore, from an application of the dominated convergence theorem,

g(z) := sup
{∣∣∣∂ξ`θ(z)

∣∣∣ : θ ∈ Θ
}

+ sup
{∣∣∂σ`θ(z)

∣∣ : θ ∈ Θ
}

(B.1.9)
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is integrable with respect to a GPD with parameter vector θ(x). Moreover, for any
θ, θ′ ∈ Θ, the mean-value theorem and the Cauchy–Schwarz inequality imply∣∣`θ(z)− `θ′(z)

∣∣ =
∣∣∣∇`

θ̃
(z)(θ − θ′)

∣∣∣ ≤ ‖∇`
θ̃
(z)‖2‖θ − θ′‖2, (B.1.10)

where θ̃ = cθ + (1 − c)θ′ for some 0 < c < 1, and z ≥ 0. Furthermore, from (B.1.9), we
have that

‖∇`
θ̃
(z)‖2 ≤

∣∣∣∂ξ`θ̃(z)
∣∣∣+ ∣∣∣∂σ`θ̃(z)

∣∣∣ ≤ g(z). (B.1.11)

From equations (B.1.10) and (B.1.11) it follows that `θ(z) is Lipschitz in θ ∈ Θ with
constant g(z), z ≥ 0. Therefore,

|S1,n(θ)− S1,n(θ′)| =

∣∣∣∣∣∣
n∑
i=1

wn(x,Xi)
(
`θ(V ∗i )− `θ′(V ∗i )

)
Pi

∣∣∣∣∣∣ ≤
n∑
i=1

wn(x,Xi)Pi
∣∣`θ(V ∗i )− `θ′(V ∗i )

∣∣
≤

 n∑
i=1

wn(x,Xi)g(V ∗i )Pi

 ‖θ − θ′‖2 =: Cn‖θ − θ′‖2.

For every n ∈ N and i = 1, . . . , n, V ∗i is independent of wn(x,Xi) and Pi. Therefore, since
z 7→ g(z) is integrable with respect to a GPD with parameter vector θ(x) it follows that
E[Cn] < +∞. Hence, Cn = OP (1).

Lemma B.6. The map θ 7→ L(θ;x) is continuous.

Proof. For any θ ∈ Θ, recall that

L(θ;x) = E[`θ(V ∗)P ] =

log σ +
(

1 + 1
ξ

)
E

log
[
1 + ξ

σ
V ∗
] (1− τ0).

The maps θ 7→ log σ and θ 7→ (1 + 1/ξ) are continuous for θ ∈ Θ. Also, by an application
of the dominated convergence theorem, the map θ 7→ E

[
log

(
1 + ξ

σ
V ∗
)]

is continuous for
θ ∈ Θ.

Lemma B.7. Under the assumptions of Theorem 2.4, it holds that supθ∈Θ |S2,n(θ)| P→ 0.

Proof. We have that

0 ≤ sup
θ∈Θ
|S2,n(θ)| = sup

θ∈Θ

∣∣∣∣∣∣
n∑
i=1

wn(x,Xi)Pi
(
`θ ◦ F−1

θ(Xi)(Ui)− `θ ◦ F
−1
θ(x)(Ui)

)∣∣∣∣∣∣
≤ sup

θ∈Θ

n∑
i=1

wn(x,Xi)Pi
∣∣∣`θ ◦ F−1

θ(Xi)(Ui)− `θ ◦ F
−1
θ(x)(Ui)

∣∣∣
≤ sup

θ∈Θ

n∑
i=1

wn(x,Xi)PiK(θ, Ui)‖Xi − x‖2

≤ sup
{
‖Xi − x‖2 : wn(x,Xi) > 0, i = 1, . . . , n

} n∑
i=1

wn(x,Xi)Pi sup
θ∈Θ

K(θ, Ui)

= oP (1),

(B.1.12)

where the second last inequality follows from Lemma B.8.a) and the last equality follows
from Lemmas B.9 and B.8.b).
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Lemma B.8. Let x ∈ Int X , U ∼ Unif[0, 1], and θ ∈ Θ.

a) Then, there exists a function K(θ, U) < +∞ such that for any y ∈ X ,∣∣∣`θ ◦ F−1
θ(y)(U)− `θ ◦ F−1

θ(x)(U)
∣∣∣ ≤ K(θ, U)‖y − x‖2.

b) Then, under the assumptions of Theorem 2.4, it holds that
n∑
i=1

wn(x,Xi)Pi sup
θ∈Θ

K(θ, Ui) = OP (1).

Proof.
a) Let U ∼ Unif[0, 1], and θ ∈ Θ. For any y ∈ X define

g(y; θ,W ) := `θ ◦ F−1
θ(y)(1− 1/W ) = log σ +

(
1 + 1

ξ

)
log

(
1 + ξ

σ

σ(y)
ξ(y)

{
W ξ(y) − 1

})
,

(B.1.13)

where W := 1/(1−U) ∼ Pareto(1) with support [1,∞). The map y 7→ g(y; θ,W ) admits
partial derivatives with respect to yj, j = 1, . . . , p, i.e.,

∂yj
g(y; θ,W ) =

(
1 + 1

ξ

)(
1 + ξ

σ

σ(y)
ξ(y)

{
W ξ(y) − 1

})−1
ξ

σ

×
(
σ′j(y)ξ(y)− σ(y)ξ′j(y)

ξ(y)2

{
W ξ(y) − 1

}
+ σ(y)
ξ(y)

{
W ξ(y) logW

}
ξ′j(y)

)
,

(B.1.14)

where σ′j, and ξ′j are the jth partial derivatives of y 7→ σ(y) and y 7→ ξ(y), respectively.
From Assumption 2.2 in the main text, we know that y 7→ ∂yj

g(y; θ,W ) are continuous
on the interior of X . Thus, for x ∈ Int X and y ∈ X , the mean-value theorem and the
Cauchy–Schwarz inequality imply

|g(y; θ,W )− g(x; θ,W )| ≤ ‖∇g(x′; θ,W )‖2‖y − x‖2,

where x′ = cy + (1− c)x for some c ∈ (0, 1). Moreover, Assumption 2.2 ensures that the
partials derivatives of y 7→ g(y; θ,W ) exist on the compact set X . Thus, we can define
K(θ, U) := ∑p

j=1 sup{|∂yj
g(y; θ,W )| : y ∈ X} and obtain∣∣∣`θ ◦ F−1
θ(y)(U)− `θ ◦ F−1

θ(x)(U)
∣∣∣ ≤ K(θ, U)‖y − x‖2.

b) From Part a), we have that K(θ, U) = ∑p
j=1 sup{|∂yj

g(y; θ,W )| : y ∈ X}, where
θ ∈ Θ, and W ≥ 1 follows a standard Pareto distribution. For every j = 1, . . . , p it holds
that

sup
y∈X
|∂yj

g(y; θ,W )| ≤ sup
y∈X

(
1 + 1

ξ

)(
1 + ξ

σ

σ(y)
ξ(y)

{
W ξ(y) − 1

})−1
ξ

σ

×
(
|σ′j(y)ξ(y)− σ(y)ξ′j(y)|

ξ(y)2

{
W ξ(y) − 1

}
+ σ(y)
ξ(y) |ξ

′
j(y)|

{
W ξ(y) logW

})

=: sup
y∈X

(
1 + 1

ξ

)
ξ

σ

 M1j(y)
{
W ξ(y) − 1

}
1 +M(y, θ)

{
W ξ(y) − 1

} +
M2j(y)

{
W ξ(y) logW

}
1 +M(y, θ)

{
W ξ(y) − 1

}
 ,
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where M1j(y) = |σ′j(y)ξ(y) − σ(y)ξ′j(y)|/ξ(y)2 ≥ 0, M2j(y) = σ(y)|ξ′j(y)|/ξ(y) ≥ 0, and
M(y, θ) = (σ(y)ξ)/(ξ(y)σ) > 0. Notice that almost surely

0 ≤
M1j(y)

{
W ξ(y) − 1

}
1 +M(y, θ)

{
W ξ(y) − 1

} ≤ M1j(y)
M(y, θ) ,

0 ≤ M2j(y)W ξ(y)

1 +M(y, θ)
{
W ξ(y) − 1

} ≤ max
{
M2j(y), M2j(y)

M(y, θ)

}
.

Therefore, for every j = 1, . . . , p, we have

sup
θ∈Θ, y∈X

|∂yj
g(y; θ,W )| ≤ sup

θ∈Θ, y∈X

(
1 + 1

ξ

)
ξ

σ

M1j(y)
M(y, θ) + max

{
M2j(y), M2j(y)

M(y, θ)

}
logW


≤
(

1 + 1
ξ−

)
ξ+

σ−

M1j

M
+ max

{
M2j,

M2j

M

}
logW


=
(

1 + 1
ξ−

)
ξ+

σ−

(
M1j

M
+ M2j

M
logW

)
,

where Mhj := sup{Mhj(y) : y ∈ X}, for h = 1, 2, M := inf{M(y, θ) : θ ∈ Θ, y ∈ X} < 1,
and σ+, ξ+ (σ−, ξ−) are the maxima (minima) of the parameter values over the compact
set Θ, respectively. Since W ∼ Pareto(1) with support [1,∞), it follows that logW ∼
Exp(1). Therefore, by taking expectation we obtain

E
(

sup
θ∈Θ

K(θ, U)
)
≤
(

1 + 1
ξ−

)
ξ+

σ−

p∑
j=1

(
M1j +M2j

M

)
=: M∗ <∞.

Let ε > 0 and consider Mε = (M∗ + 1)/ε > 0. Then, for any n ∈ N, it holds that

P

 n∑
i=1

wn(x,Xi)Pi sup
θ∈Θ

K(θ, Ui)) > Mε

 ≤ E
(∑n

i=1wn(x,Xi)Pi supθ∈ΘK(θ, Ui)
)

Mε

=
∑n
i=1 E

(
wn(x,Xi)

)
E
(
supθ∈ΘK(θ, Ui)

)
E (Pi)

Mε

=
E
(∑n

i=1wn(x,Xi)
)
E
(
supθ∈ΘK(θ, U)

)
E (P )

Mε

=
E
(
supθ∈ΘK(θ, U)

)
(1− τ0)

Mε

≤ M∗(1− τ0)
Mε

< ε.

Lemma B.9. Under the assumptions of Theorem 2.4, it holds that

sup
{
‖Xi − x‖2 : wn(x,Xi) > 0, i = 1, . . . , n

}
= oP (1).

Proof. This result follows from Lemma 2 of Wager and Athey (2018) which states that
diam(Lb(x)) = oP (1). It does not require the random forest to be honest; i.e., we can
assume that we use the same observations to place the splits and make predictions. For
each tree b = 1, . . . , B of the forest, we subsample Sb ⊂ {1, . . . , n} observations from the
training data, with |Sb| = s < n. Denote by Lb(x) ⊂ X the leaf containing the fixed
predictor value x ∈ X . Define the diameter diam(Lb(x)) := supz,y∈Lb(x)‖z − y‖2 of the
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leaf Lb(x) as the length of the longest segment contained inside Lb(x). Recall that the
weights of a (not necessarily honest) random forest are defined as

wn(x,Xi) = 1
B

B∑
i=1

wn,b(x,Xi) = 1
B

B∑
b=1

1{Xi ∈ Lb(x), i ∈ Sb}
|{Xi ∈ Lb(x), i ∈ Sb}|

.

Also, note that

{
‖Xi − x‖2 : wn(x,Xi) > 0, i = 1, . . . , n

}
=
{
‖Xi − x‖2 : ∃b = 1, . . . , B,Xi ∈ Lb(x), i ∈ Sb

}
= ∪Bb=1

{
‖Xi − x‖2 : Xi ∈ Lb(x), i ∈ Sb

}
⊂ ∪Bb=1

{
‖y − x‖2 : y ∈ Lb(x)

}
.

Therefore,

sup
{
‖Xi − x‖2 : wn(x,Xi) > 0, i = 1, . . . , n

}
≤ sup∪Bb=1

{
‖y − x‖2 : y ∈ Lb(x)

}
= Bmax

b=1
sup

{
‖y − x‖2 : y ∈ Lb(x)

}
≤ Bmax

b=1
diam(Lb(x)).

Thus, for every ε > 0

0 ≤ P
(
sup

{
‖Xi − x‖2 : wn(x,Xi) > 0, i = 1, . . . , n

}
> ε

)
≤ P

(
Bmax
b=1

diam(Lb(x)) > ε
)
≤

B∑
b=1

P
(
diam(Lb(x)) > ε

)
→ 0.

B.2 Partial Derivative on the Boundary

For any function f : [0, 1]p → R, we define the first order partial derivative on the
boundary by

∂xj
f(x) :=

limh↓0
f(x+hej)

h
, if x ∈ [0, 1]p, xj = 0,

limh↓0
f(x)−f(x−hej)

h
, if x ∈ [0, 1]p, xj = 1.

B.3 Weight Function Estimation

In quantile regression tasks, the weight function (x, y) 7→ wn(x, y) estimated by GRF
measures the similarity between x and y according to their conditional distribution.

Figure B.1 shows the localizing weights wn(x,Xi), x,Xi ∈ Rp, for two test predictors
x with x1 = −0.2, 0.5, respectively. The data is generated according to Example 2.1,
with n = 2000 observations and p = 40 predictors. In the left panel of Figure B.1, the
observations (Xi, Yi) with Xi1 < 0 are the ones influencing most the test predictor x
with x1 = −0.2. This is because they share the same conditional distribution. A similar
argument holds for the right panel of Figure B.1.



94 Appendix B. Extremal Random Forests

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.000

0.001

0.002

0.003

X1

w
n(
x,
X
i)

Figure B.1: The height of the points represents the localizing weights wn(x,Xi) between
a test predictor x ∈ Rp and each training observation Xi ∈ Rp. The dashed line indicates
the first coordinate of the test predictor values.

B.4 Additional Material for Simulation Study

B.4.1 Sensitivity of Intermediate Threshold Level

Figure B.2 shows the square root MISE of predicted quantiles as a function of the inter-
mediate threshold τ0 for different quantile levels τ and different shape parameters ξ of
the noise variable. Even though the threshold choice has an influence on the prediction
accuracy, from the scales of the square root MISE it can be seen that this influence is
not too strong. The optimal choice will depend on the properties of the data such as the
tail heaviness of the response; for details see de Haan and Ferreira (2006, Section 3.2). In
applications, there are numerous data-driven methods for choosing the threshold such as
the mean excess plot (see Embrechts et al., 2012, Section 6.2.2).
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Figure B.2: Square root MISE of predicted quantiles as a function of the intermediate
threshold τ0 for different quantile levels τ and different shape parameters ξ of the noise
variable. Each point is an average over m = 100 repetitions. The data is generated
according to Example 2.1 in the main text, where we set the dimension of the predictor
space to p = 5.

B.4.2 Experiment 3
In the last experiment mentioned in Section 2.4, we consider more complex regression
functions depending on more signal variables both in the scale and shape parameters.
While the predictor variables X are uniform distributed on [−1, 1]p with p = 10, the
conditional response follows three different models

(Y | X = x) ∼ sj(x)Tν(x), j = 1, 2, 3,

where we allow both degrees of freedom ν(x) and the scale sj(x) of the Student’s t dis-
tribution to depend on the predictors. In particular, we model the degrees of freedom as
a decreasing function of the first predictor as ν(x) = 3[2 + tanh(−2x1)], and the different
scale functions as

s1(x) = [2 + tanh(2x1)](1 + x2/2),
s2(x) = 4− (x2

1 + 2x2
2),

s3(x) = 1 + 2πϕ(2x1, 2x2),
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where ϕ denotes a centered bivariate Gaussian density with unit variance and correlation
coefficient equal to 0.75. The first scale function s1(x) is non-linear with respect to the
first predictor and contains an interaction effect between the first two predictors. The
function s2(x) is quadratic and decreasing in the first two dimensions. The third scale
function s3(x) is non-linear in the first two predictors and contains an interaction effect.
The sample size is n = 5000.

In this experiment we compare ERF, GRF, GBEX, EGP Tail and the unconditional
method. We leave out EGAM because we observed it performs poorly in the scenarios
considered here. Figure B.3 shows the boxplots of

√
ISE over m = 50 simulations over

different models, methods, and quantile levels. For better visualization, we remove large
outliers of GRF, QRF, and EGP Tail. We observe that ERF and GBEX generally out-
perform the other methods over all models and quantile levels, where GBEX has a slight
advantage in high quantiles for Models 2 and 3. GRF and QRF seems to deteriorate
completely for very large quantiles.

B.5 Additional Material for U.S. Wage Analysis

B.5.1 Additional Figure
Figure B.4 shows that estimated GPD parameters θ̂(x) for the original response as a
function of age for groups with less or more than 15 years of education.

B.5.2 Analysis with Log-Transformed Response
Following Angrist et al. (2009), we consider here the natural logarithm of the wage as
response variable for quantile regression. We perform the same analysis as in Section 2.5
again with this log-transformed response since it highlights several interesting properties
of the ERF algorithm. Figure B.5 shows the GPD parameters θ̂log(x) estimated by ERF
as a function of years of education when the response is log(Y ). We notice that the
log-transformation makes the response lighter-tailed, with estimated shape parameters
ξ̂log(x) fairly close to 0. The scale parameters σ̂log(x) still show a certain structure, but
they vary on a much smaller scale compared to σ̂(x) estimated on the original response; see
Figure 2.6 in the main text. These observations are consistent with theory since it is well-
known that the log-transformation renders heavy-tailed data into light-tailed (Embrechts
et al., 2012, Example 3.3.33). Moreover, the shape parameter on the original data then
essentially acts as a scale parameter in the GPD approximation of the log-transformed
data, explaining the smaller variation of σ̂log(x).

Figure B.6 in the main text shows the (exponentiated) predicted quantiles exp{Q̂log
x (τ)}

of the different methods as a function of years of education when the response is log(Y );
we removed again all quantiles above 6,000 predicted by GRF. By construction, GRF
is invariant to the log-transformation, while the methods based on extrapolation may
produce predictions that differ from Q̂x(τ) in Figure 2.7 fitted on the original data. The
reason is that the approximation by the GPD is done on heavy-tailed data on the original
scale and on much lighter-tailed data on the log-scale. We observe in Figure B.6 that
the flexible methods ERF and GBEX have the desirable property that the predictions
do not change much under marginal transformations. The unconditional method on the
other hand seems to be sensitive to marginal transformation and works better on the log-
transformed data as it captures a larger variability of the conditional quantiles even for



B.5. Additional Material for U.S. Wage Analysis 97

Model 3: (s3(x),ν(x))

τ = 0.99 τ = 0.995 τ = 0.9995

Model 2: (s2(x),ν(x))

τ = 0.99 τ = 0.995 τ = 0.9995

Model 1: (s1(x),ν(x))

τ = 0.99 τ = 0.995 τ = 0.9995

0.9 1.2 1.5 1.8 2.11.0 1.5 2.0 2.5 3 4 5 6 7

1 2 3 2 4 6 5 10 15 20

1 2 3 4 5 2 4 6 8 5 10 15 20

ERF

GRF

QRF

GBEX

EGP Tail

Unc. GPD

ERF

GRF

QRF

GBEX

EGP Tail

Unc. GPD

ERF

GRF

QRF

GBEX

EGP Tail

Unc. GPD

ISE

Figure B.3: Boxplots of
√

ISE over m = 50 simulations for different generative models
(rows) and quantile levels (columns). The predictor space dimension is set to p = 10.
Triangles represent the average values.

high τ . This is confirmed by Figure B.7 where we observe that the unconditional method
has a smaller loss especially for higher quantiles, while all other methods have a similar
performance as on the original data. To better understand this behavior, we recall the
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Figure B.4: Estimated GPD parameters θ̂(x) as a function of age for groups with less
(circles) or more (triangles) than 15 years of education.
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Figure B.5: Estimated GPD parameters θ̂(x) for the log-response as a function of the
years of education for the black (triangles) and white (circles) subgroups.

GPD approximation from (2.1.1) for large quantiles estimated on the original response as

Q̂x(τ) ≈ Q̂x(τ0) +G−1
(
τ − τ0

1− τ0
; θ̂(x)

)
, (B.5.1)

where G−1 is the inverse of the distribution function (2.2.2) of the GPD; see Figure 2.7 in
the main text. On the other hand, first estimating the quantiles of the log-transformed
data with a similar approximation and then exponentiating these estimates results in

exp{Q̂log
x (τ)} ≈ Q̂x(τ0) exp

G−1
(
τ − τ0

1− τ0
; θ̂log(x)

) , (B.5.2)

where θ̂log(x) is the parameter vector of the GPD fitted for the response log(Y ); see
Figure B.6. We note that Q̂x(τ0) is the same in both approximations since it is fitted using
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quantile GRF, which is invariant under marginal transformations. Comparing (B.5.1) and
(B.5.2) shows that the intermediate quantiles have an additive and multiplicative influence
on the extreme quantiles, respectively. This explains why using the unconditional method
for the GPD with θ̂log(x) ≡ θ̂log seems to work better on the log-transformed data. Indeed,
the different multiplicative scalings observed for ERF and GBEX in Figure 2.7 in the
main text cannot be represented by (B.5.1) with unconditional GPD, but they can be
represented by (B.5.2) if the intermediate quantile already carries the structure.

ERF GRF GBEX Unconditional GPD

τ
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0.9
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0.995
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Figure B.6: Predicted quantiles at levels τ = 0.9, 0.995 for ERF, GRF, GBEX, and the
unconditional method fitted on the log-response.
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Figure B.7: Absolute value of the loss (2.5.1) for the different methods fitted on the
log-response of the U.S. wage data. The shaded area represents the 95% interval of the
absolute value of a standard normal distribution.





Appendix C

Distribution generalization in
semi-parametric models: A control
function approach

C.1 Proofs

C.1.1 Proof of Proposition 3.4
Proof.

We first show that J ⊆ I. Let f ∈ J . Let δ ∈ ker(MT
0 ) such that f(x) = f0(x)+δTx,

for all x ∈ Rp. Notice that,

Y − f(X) = U − δTX = U − δT (M0E + V ) = U − δTV,

because δ ∈ ker(MT
0 ). Since (U, V ) ⊥⊥ E, it follows that Y − f(X) ⊥⊥ E. Thus, f ∈ I.

We now show that there exists a function f ∈ I such that f /∈ J . Fix some measurable
non-linear function g : R → R such that f(x) = f0(x) + g(δTx), for all x ∈ Rp. Since
δ ∈ ker(MT

0 ), it holds that g(δTX) = g(δTV ). Notice that

Y − f(X) = U − g(δTV ) ⊥⊥ E.

Thus, f ∈ I. Since g is non-linear, it holds that f /∈ J .

C.1.2 Proof of Proposition 3.5
Proof. First, the error term V = X − E[X | E] is identified from the observational
distribution PC0 . For almost every (a.e.) x, v ∈ Rp, it holds that

E[Y | X = x, V = v] = E[f0(X) + U | X = x, V = v] = f0(x) + E[U | X = x, V = v]
= f0(x) + E[U | V = v] = f0(x) + γT0 v.

(C.1.1)

We now show the two implications.
(⇒) Let f ∈ J . Let δ ∈ ker(MT

0 ) such that f(x) = f0(x)+δTx, for all x ∈ Rp. For a.e.
x, v ∈ Rp, there exists e ∈ Rr such that x = M0e + v. Thus, δTx = δT (M0e + v) = δTv.
Fix γ = γ0 − δ ∈ Rp. Then, for a.e. x, v ∈ Rp,

f(x) + γTv = f0(x) + δTx− δTv + γT0 v = f0(x) + γT0 v,
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which satisfies (C.1.1).
(⇐) Let f : Rp → R and γ ∈ Rp such that E[Y | X = x, V = v] = f(x) + γTv, for a.e.

x, v ∈ Rp. Fix h = f − f0 so that, for a.e. x, v ∈ Rp,

E[Y | X = x, V = v] = f0(x) + h(x) + γTv.

From (C.1.1), it follows that

h(x) = (γ0 − γ)Tv, for a.e. x, v ∈ Rp. (C.1.2)

Let e ∈ Rr, v ∈ Rp, and fix x = M0e+ v ∈ Rp. From (C.1.2), it follows that

h(M0e+ v) = (γ0 − γ)Tv. (C.1.3)

Since (C.1.3) holds for all e ∈ Rr, v ∈ Rp, we have in particular

h(v) = (γ0 − γ)Tv, for all v ∈ Rp. (C.1.4)

Since x = M0e+ v ∈ Rp, (C.1.4) implies

h(M0e+ v) = (γ0 − γ)T (M0e+ v). (C.1.5)

Equating (C.1.3) and (C.1.5), we conclude that (γ0 − γ)TM0e = 0 for all e ∈ Rr, and
hence (γ0 − γ) ∈ ker(MT

0 ). Therefore, f(·) = f0(·) + (γ0 − γ)T · ∈ J .

C.1.3 Proof of Proposition 3.6
Proof. Notice that f0 ∈ J . Moreover, for any δ ∈ ker(MT

0 ) we have that

Y − f0(X)− δTX = U − δT (M0E + V ) = U − δTV. (C.1.6)

Thus,

min
δ∈ker(MT

0 )
E[(Y − f0(X)− δTX)2] = min

δ∈ker(MT
0 )

E[(U − δTV )2]

= min
δ∈ker(MT

0 )
E[(γT0 V + εU − δTV )2] = min

δ∈ker(MT
0 )

E[(γT0 V − δTV )2] + E[ε2U ],
(C.1.7)

where the cross product term in the last equality vanishes since εU ⊥⊥ V . Notice that
any vector δ ∈ ker(MT

0 ) can be written as δ = Rα for some α ∈ Rp−r. Therefore,(C.1.7)
writes

min
a∈Rp−r

E[(V Tγ0 − V TRα)2] = min
a∈Rp−r

(γ0 −Rα)TS(γ0 −Rα)

= min
a∈Rp−r

γT0 Sγ0 − 2αTRTSγ0 + αTRTSRα.
(C.1.8)

Differentiating with respect to α and using the fact that RTSR is invertible yields

δ0 := Rα0 = R(RTSR)−1RTSγ0.

Therefore, the optimal function is f ∗(x) = f0(x) + δT0 x ∈ J , for all x ∈ Rp.
We now prove that the optimal function f ∗ is well-defined, i.e., it does not depend on

the choice of the representative function f̃ ∈ J . Let f̃ ∈ J . From the definition of J
in (3.3.4), there exists some fixed δ ∈ ker(MT

0 ) such that for all x ∈ Rp

f̃(x) = f0(x) + δ
T
x, (C.1.9)
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so, it holds PC0-almost surely that

Y = f0(X) + U = f̃(X)− δTX + U = f̃(X)− δTV + U.

Using the same argument as in (C.1.7) and (C.1.8), with f̃ and (γ0− δ) in place of f0 and
γ0, respectively, the optimal element in the kernel writes

δ̃ := R(RTSR)−1RTS(γ0 − δ). (C.1.10)

Write δ = Rα for some α ∈ Rp−r. Therefore, using (C.1.9) and (C.1.10), the optimal
function writes

f ∗(x) = f̃(x) + δ̃Tx = f0(x) + δ
T
x+ (γ0 − δ)TSTR(RTSR)−1RTx

= f0(x) + αTRTx+ (γ0 −Rα)TSTR(RTSR)−1RTx

= f0(x) + αTRTx+ γT0 S
TR(RTSR)−1RTx− αTRTSTR(RTSR)−1RTx

= f0(x) + αTRTx+ δT0 x− αTRTx = f0(x) + δT0 x, for all x ∈ Rp.

C.1.4 Proof of Lemma 3.7
Proof. For ease of notation, define M := M0. For ε > 0, let h∗ ∈ F such that

sup
e∈Rr

F (h∗, e) < inf
h∈F

sup
e∈Rr

F (h, e) + ε.

For any e ∈ Rr, it holds that

F (h∗, e)− E[(V Tγ0 − V T δ0)2] ≥ 2 (γ0 − δ0)TE[V V T δ0 − V h∗(Me+ V )]
= 2 (γ0 − δ0)T

{
Sδ0 − E[V h∗(Me+ V )]

}
= 2(γ0 − δ0)TSδ0 − 2(γ0 − δ0)TE[V h∗(Me+ V )].

(C.1.11)

From Proposition 3.6, the optimal element in the kernel can be written as δ0 = Pγ0 :=
R(RTSR)−1RTSγ0 ∈ Rp, where R ∈ Rp×(p−r) denotes an orthonormal basis for ker(MT ).
Using the fact that SP = P TSP , we obtain

(γ0 − δ0)TSδ0 = γT0 (I − P T )SPγ0 = γT0 (SP − P TSP )γ0 = 0. (C.1.12)

Thus, from (C.1.11) and (C.1.12), it follows that

sup
e∈Rr

F (h∗, e)− E[(V Tγ0 − V T δ0)2] ≥ −2(γ0 − δ0)TE[V h∗(Me+ V )], e ∈ Rr. (C.1.13)

Suppose h∗ is bounded. By Lemma C.4, for any η > 0 there exists ẽ ∈ Rr such that

−2(γ0 − δ0)TE[V h∗(Mẽ+ V )] > −η. (C.1.14)

Hence, from (C.1.13) and (C.1.14), it follows that

sup
e∈Rr

F (h∗, e) > E[(V Tγ0 − V T δ0)2]− η.
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Since η > 0 was arbitrary, it follows that

E[(V Tγ0 − V T δ0)2] ≤ sup
e∈Rr

F (h∗, e) < inf
h∈F

sup
e∈Rr

F (h, e) + ε.

Since ε > 0 was arbitrary, this completes the proof of Lemma 3.7 for bounded h∗ ∈ F .
Suppose h∗ ∈ F is unbounded. Define the function FA : F × Rr → [0,∞) for all

h ∈ F , e ∈ Rr and A ⊆ Rp by

FA(h, e) :=
∫
A

(vTγ0 − h(M0e+ v))2φS(v) dv,

where φS denotes the density of V . FixK > 0 and consider the compact IK = T ([−K,K]p) ⊆
Rp, where T : Rp → Rp is the invertible map ε 7→ T (ε) = S1/2ε. Define mK :=
max

{
|vTγ0| : v ∈ IK

}
, and consider the bounded function hK(v) = min{|h∗(v)|,mK} sign(h∗(v)).

Then, it holds that

sup
e∈R

F (h∗, e) ≥ sup
e∈R

FIK
(h∗, e) ≥ sup

e∈R
FIK

(hK , e). (C.1.15)

Since V ∼ N(0, S), it holds that V d= S1/2ε, where ε ∼ N(0, Ip). Thus,

FIc
K

(hK , e) =
∫
Ic

K

(vTγ0 − hK(M0e+ v))2φS(v) dv

=
∫
Rp\[−K,K]p

(εTS1/2γ0 − hK(M0e+ S1/2ε))2φI(ε) dε,

where φI is the density of ε. Moreover, for any η > 0, there exists K0 such that for all
K > K0,

0 ≤ sup
e∈R

FIc
K

(hK , e) ≤
∫
Rp\[−K,K]p

(
εTS1/2γ0 +mK sign(εTS1/2γ0)

)2
φI(ε) dε < η.

since all moments exist. Recall that hK is bounded for all K > K0, and thus

E[(V Tγ0 − V T δ0)2] ≤ sup
e∈R

F (hK , e). (C.1.16)

At the same time,

E[(V Tγ0 − V T δ0)2] ≤ sup
e∈R

F (hK , e) = sup
e∈R

{
FIK

(hK , e) + FIc
K

(hK , e)
}
< sup

e∈R
FIK

(hK , e) + η.

Since η > 0 was arbitrary, it follows that lim infK→∞ supe∈R FIK
(hK , e) = E[(V Tγ0 −

V T δ0)2]. Using (C.1.15) it follows that

E[(V Tγ0 − V T δ0)2] ≤ sup
e∈R

F (h∗, e) ≤ inf
h∈F

sup
e∈R

F (h, e) + ε.

Since ε > 0 was arbitrary, this completes the proof of Lemma 3.8 for unbounded h∗ ∈ F .
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C.1.5 Proof of Theorem 3.8
Proof. We treat the two terms in (3.3.9) separately. Consider the term on the right-hand
side. Let f ∈ F and e ∈ Rr. Since the environment vector E ∈ Rr is exogenous, the
do-intervention on E is the same as the conditional expectation

E[(Y − f(X))2 | do(E := e)] = E[(Y − f(X))2 | E = e]. (C.1.17)

Moreover, we can write f = f0 + h, for some h ∈ F . Substituting the definitions of Y
and f we obtain

Y − f(X) = f0(X) + U − f0(X)− h(X) = U − h(X) = V Tγ0 + εU − h(X). (C.1.18)

By combining (C.1.17) and (C.1.18), we obtain

E[(Y − f(X))2 | do(E := e)] = E[(V Tγ0 + εU − h(X))2 | E = e]
= E[(V Tγ0 + εU − h(M0e+ V ))2] = E[(V Tγ0 − h(M0e+ V ))2] + E[ε2U ],

(C.1.19)

where the cross product term in the last equation vanishes since εU ⊥⊥ V .
Consider now the term on the left-hand side of 3.3.9. Let f ∈ J . Then, there exists

some δ ∈ ker(MT
0 ) such that f(x) = f0(x) + δTx for all x ∈ Rp. Moreover, recall that

δTX = δTV . Substituting the definitions of Y and f , we obtain

E[(Y − f(X))2] = E[(f0(X) + V Tγ0 + εU − f0(X)− δTX)2]
= E[(V Tγ0 + εU −XT δ)2]
= E[(V Tγ0 − V T δ)2] + E[ε2U ],

(C.1.20)

where the cross product term in the last equation vanishes since εU ⊥⊥ V . Since f ∈ F ,
f ∈ J and e ∈ Rr were arbitrary, using (C.1.19) and (C.1.20), we get

min
f∈J

E[(Y − f(X))2] = min
δ∈ker(MT

0 )
E[(V Tγ0 − V T δ)2] + E[ε2U ]

= min
h∈F

sup
e∈Rr

E[(V Tγ0 − h(M0e+ V ))2] + E[ε2U ]

= min
f∈F

sup
e∈Rr

E[(Y − f(X))2 | do(E := e)],

(C.1.21)

where the second equality follows from Lemma 3.7.

C.1.6 Proof of Corollary 3.9
Proof. Since J ( I from Proposition 3.4, we have that

min
f∈J

E
[
(Y − f(X))2

]
≥ min

f∈I
E
[
(Y − f(X))2

]
. (C.1.22)

For any f ∈ I, since Y − f(X) ⊥⊥ E, it holds that

E
[
(Y − f(X))2 | E = e

]
= E

[
(Y − f(X))2

]
, for all e ∈ Rr. (C.1.23)
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Therefore, using Theorem 3.8 and the fact that I ⊆ F , we obtain

min
f∈J

E
[
(Y − f(X))2

]
= min

f∈F
sup
e∈Rr

E[(Y − f(X))2 | do(E := e)]

≤ min
f∈I

sup
e∈Rr

E[(Y − f(X))2 | do(E := e)]

= min
f∈I

sup
e∈Rr

E[(Y − f(X))2 | E = e]

= min
f∈I

E
[
(Y − f(X))2

]
.

(C.1.24)

C.2 Further lemmas
We first define the main objects needed in the following lemmas.
Definition C.1. Let

1. M ∈ Rp×r be a matrix such that rank(M) = r,

2. S ∈ Rp×p be a positive definite matrix,

3. R ∈ Rp×(p−r) denote an orthonormal basis for ker(MT ),

4. Q ∈ Rp×r denote an orthonormal basis for span(M),

5. Bk = S + kMMT , for any k > 0.
We will also use the following facts.

Remark C.1. The matrix MMT admits the spectral decomposition

MMT = RΛ0R
T +QΛ1Q

T ,

where 0 = λ1 = · · · = λp−r are the eigenvalues in Λ0, and 0 < λp−r+1 ≤ · · · ≤ λp are the
eigenvalues in Λ1. /

Remark C.2. For any k > 0, the matrix kMMT has the same eigenvectors as MMT

and eigenvalues 0 = kλ1 = · · · = kλp−r < kλp−r+1 ≤ · · · ≤ kλp. So, we can write

kMMT = RΛ0R
T +QkΛ1Q

T .

/

Remark C.3. Let k > 0 and consider Bk = S + kMMT . Denote by λ̃j its eigenvalues,
j = 1, . . . , p. By Weyl’s inequality (Weyl, 1912), we have that

λS1 + kλj ≤ λ̃j ≤ λSp + kλj, for j = 1, . . . , p,

where 0 < λSj are the eigenvalues of S positive definite. Thus, we have that

0 < λS1 = λS1 + λj ≤ λ̃j ≤ λSp + λj = λSp , j = 1, . . . , p− r,
0 < kλj < kλj + λS1 ≤ λ̃j ≤ λSp + kλj, j = p− r + 1, . . . , p,

(C.2.1)

Therefore, we can write

Bk = RkΛ̃0kR
T +QkΛ̃1kQ

T
k , (C.2.2)

where Rk ∈ Rp×(p−r) and Qk ∈ Rp×r are orthonormal matrices. /
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Lemma C.2. It holds that

‖B−1/2
k −RRTB

−1/2
k ‖F → 0, as k →∞.

Proof. Using the spectral decomposition of Bk given in (C.2.2) and using results from
Lemma C.6, we have that

‖(I −RRT )B−1/2
k ‖F ≤ ‖(I −RRT )RkΛ̃−1/2

0k RT‖F + ‖(I −RRT )QkΛ̃−1/2
1k QT

k ‖F
= ‖(I −RRT )RkΛ̃−1/2

0k ‖F + ‖(I −RRT )QkΛ̃−1/2
1k ‖F

≤ ‖(I −RRT )Rk‖F ‖Λ̃−1/2
0k ‖F + ‖(I −RRT )‖F ‖Qk‖F ‖Λ̃−1/2

1k ‖F .
(C.2.3)

We treat the terms separately. First, notice that

‖(I −RRT )‖F = ‖Qk‖F =
√
r. (C.2.4)

Also, from (C.2.1) in Remark C.3, it holds that

‖Λ̃−1/2
0k ‖F ≤

√
p− r
λS1

,

‖Λ̃−1/2
1k ‖F ≤

√
r

kλp−r+1
→ 0, as k →∞.

(C.2.5)

Furthermore, using the fact that (I −RkR
T
k ) = QkQ

T
k , it holds that

‖(I −RRT )Rk‖2
F = tr(RT

k (I −RRT )Rk)
= tr(RT

kRk −RT
kRR

TRk)
= tr(RTR−RTRkR

T
kR)

= tr(RT (I −RkR
T
k )R)

= tr(RTQkQ
T
kR)

= ‖QT
kR‖2

F → 0,

(C.2.6)

as k →∞, using Lemma C.3.
Putting together (C.2.3), (C.2.4), (C.2.5), and (C.2.6), we conclude that

‖B−1/2
k −RRTB

−1/2
k ‖F → 0, as k →∞.

The following lemma is an adaptation of the Davis–Kahan theorem (Davis and Kahan,
1970).

Lemma C.3. It holds that

‖QT
kR‖F → 0, as k →∞.

Proof. Let k > 0. From Remark C.2, we can write

kMMTR = RΛ0 +QkΛ1Q
TR = RΛ0 = 0 ∈ Rp×(p−r),
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since 0 = λ1 = · · · = λp−r. Therefore, SR = kMMTR + SR = (kMMT + S)R = BkR.
At the same time, from (C.2.2) in Remark C.3, it holds that QT

kBk = Λ̃1kQ
T
k . Thus, we

have that QT
k SR = QT

kBkR = Λ̃1kQ
T
kR. It follows that

‖QT
kR‖F = ‖Λ̃−1

1k Λ̃1kQ
T
kR‖F ≤ ‖Λ̃−1

1k ‖F ‖Λ̃1kQ
T
kR‖F = ‖Λ̃−1

1k ‖F ‖QT
k SR‖F

≤ ‖Λ̃−1
1k ‖F ‖Qk‖F ‖SR‖F .

(C.2.7)

We treat each term separately. First, from (C.2.1) in Remark C.3, it holds that

‖Λ̃−1
1k ‖F ≤

r

kλp−r+1
→ 0, as k →∞. (C.2.8)

Also, it holds that

‖Qk‖F =
√
r, ‖SR‖F ≤

√
p(p− r)λSp . (C.2.9)

Putting (C.2.7), (C.2.8), and (C.2.9), the claim follows.

Lemma C.4. Let V ∼ N(0, S) where S ∈ Rp×p is positive definite. Let h ∈ F be a
bounded function. Then, for any η > 0 there exists ẽ ∈ Rr such that

(γ0 − δ0)TE[V h(Mẽ+ V )] < η.

Proof. Let h ∈ F be a bounded function and let k > 0. Consider

E[V h(MEk + V )] =
∫
Rr

E[V h(Me+ V )]φkI(e) de,

where Ek ∼ N(0, kI) with Ek ⊥⊥ V , and φkI : Rr → [0,∞) denotes the multivariate normal
density with mean zero and covariance kI ∈ Rr×r. Let Wk := MEk+V ∼ N(0, Bk), where
Bk := S + kMMT is positive definite. From the properties of Gaussian distribution, the
conditional expectation of Ek given Wk is

E[Ek | Wk] = E[EkW T
k ]E[WkW

T
k ]−1Wk = kMTB−1

k Wk. (C.2.10)

Furthermore, notice that

I − kMMTB−1
k = (S + kMMT − kMMT )B−1

k = SB−1
k . (C.2.11)

Therefore, from (C.2.10) and (C.2.11), it holds that

E[V h(MEk + V )] = E[(Wk −MEk)h(Wk)] = E[(Wk −ME[Ek | Wk])h(Wk)]
= E[{Wk − kMMTB−1

k Wk}h(Wk)]
= E[{I − kMMTB−1

k }Wkh(Wk)]
= SB−1

k E[Wkh(Wk)].

(C.2.12)

For λ ∼ N(0, I) with I ∈ Rp×p we have that Wk
d= B

1/2
k λ. Thus, we can write (C.2.12) as

E[V h(MEk + V )] = SB−1
k E[Wkh(Wk)] = SB

−1/2
k E[λh(B1/2

k λ)]. (C.2.13)

Since h is bounded, there exists M > 0 such that

|h(v)| ≤M, v ∈ Rp. (C.2.14)
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Moreover, from Proposition 3.6 it holds that

δ0 = Pγ0 = R(RTSR)−1RTSγ0 ∈ Rp, (C.2.15)

where R ∈ Rp×(p−r) denotes an orthonormal basis for ker(MT ). Therefore, from (C.2.13),
(C.2.14), and (C.2.15), and using Cauchy–Schwarz, it follows that∣∣∣(γ0 − δ0)TE[V h(MEk + V )]

∣∣∣ =
∣∣∣∣γT0 (I − P )TSB−1/2

k E[λh(B1/2
k λ)]

∣∣∣∣
≤ ‖γT0 (I − P )TSB−1/2

k ‖2 ‖E(|λ|)M‖2.
(C.2.16)

Notice that ‖E(|λ|)M‖2 <∞. Moreover, using results from Lemma C.6, we have that

‖γT0 (I − P )TSB−1/2
k ‖2

‖γ0‖2
≤ ‖(I − P )TSB−1/2

k ‖F

= ‖(I − P )TSRRTB
−1/2
k + (I − P )TSB−1/2

k − (I − P )TSRRTB
−1/2
k ‖F

≤ ‖(I − P )TSRRTB
−1/2
k ‖F + ‖(I − P )TS(B−1/2

k −RRTB
−1/2
k )‖F

≤ ‖(I − P )TSR‖F ‖RTB
−1/2
k ‖F + ‖(I − P )TS‖F ‖B−1/2

k −RRTB
−1/2
k ‖F .

(C.2.17)

Notice that

‖(I − P )TSR‖F = ‖SR− SR(RTSR)−1RTSR‖F = 0.

Furthermore, from Lemma C.5, we have that ‖RTB
−1/2
k ‖F <∞. Also, from Lemma C.2,

we have that ‖B−1/2
k −RRTB

−1/2
k ‖F → 0 as k →∞. So, using (C.2.17), it follows that

‖γT0 (I − P )TSB−1/2
k ‖2 → 0, as k →∞,

which in turn implies, using (C.2.16), that∣∣∣(γ0 − δ0)TE[V h(MEk + V )]
∣∣∣→ 0, as k →∞.

Therefore, for any η > 0, there exists a k0 > 0 such that for all k ≥ k0 it holds that

−η < (γ0 − δ0)TE[V h(MEk + V )] =
∫
Rr

(γ0 − δ0)TE[V h(Me+ V )]φkI(e) de < η.

Therefore, there exists ẽ ∈ Rr such that

(γ0 − δ0)TE[V h(Mẽ+ V )] < η.

Lemma C.5. For any k > 0, it holds that ‖RTB
−1/2
k ‖F <∞.

Proof. Let k > 0. It holds that

‖RTB
−1/2
k ‖F ≤ ‖R‖F‖B−1/2

k ‖F = ‖R‖F‖RkΛ̃−1/2
0k RT +QkΛ̃−1/2

1k QT
k ‖F

≤ ‖R‖F
(
‖RkΛ̃−1/2

0k ‖F + ‖QkΛ̃−1/2
1k ‖F

)
≤ ‖R‖F

(
‖Rk‖F ‖Λ̃−1/2

0k ‖F + ‖Qk‖F ‖Λ̃−1/2
1k ‖F

)

≤
√
p− r

p− r√
λS1

+ r√
kλp−r+1

 <∞.
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The next lemma provides useful results about the Frobenius norm.

Lemma C.6. Let A ∈ Rm×n, B ∈ Rn×p and v ∈ Rn. Let C ∈ Rq×n such that CTC = In.
Then, it holds that

‖Av‖2 ≤ ‖A‖F‖v‖2,

‖AB‖F ≤ ‖A‖F ‖B‖F ,
‖A+B‖F ≤ ‖A‖F + ‖B‖F ,
‖ACT‖F = ‖CAT‖F = ‖A‖F .

where ‖A‖F :=
√

tr(ATA).
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