
�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

Swiss Federal Institute of Technology Zurich Seminar for
Statistics

Department of Mathematics

Master Thesis Summer 2018

Nicola Gnecco

Causality in Heavy-Tailed Data

Submission Date: August 3rd, 2018

Adviser: Prof. Dr. Nicolai Meinshausen

iii

To my Family and to Ninna

iv Preface

Preface

I would like to thank Professor Meinshausen, for guiding me during this thesis. He dedi-
cated a lot of his time to help me. He always gave me the right insights to proceed and
gently corrected me when I was going off the path. It has been a privilege to have him as
a supervisor.

I am grateful to Professor Engelke, for the several insightful discussions and his constant
and constructive feedbacks.

v

vi Abstract

Abstract

We introduce a novel method to estimate a causal order from heavy-tailed data. We start
with a binary coefficient Γ, to detect causal directions between heavy-tailed variables.
This coefficient, proposed by Engelke, Meinshausen, and Peters (2018), can also detect
the presence of a hidden confounder. We investigate the population properties of the Γ
coefficient in a linear SEM, with an arbitrary number of variables. Besides, we prove that
it is possible to identify the source node of a linear SEM, under some assumptions. Based
on this result, we build four competing algorithms to recover the causal order of a graph
from observational data. We compare and test the sample properties of the algorithms
on simulated data. We show that our algorithms perform equally well in the large sample
limit when the heavy-tail assumption is fulfilled. Finally, we test the algorithms in the
presence of hidden confounders.

vii

viii CONTENTS

Contents

1 Introduction 1
1.1 Problem and Motivation . 1
1.2 Outline . 2
1.3 Contributions . 2

2 Causality 3
2.1 Graphs . 3
2.2 Bayesian Networks . 8
2.3 Causal Bayesian Networks . 10

2.3.1 Causal Bayesian Network and do-calculus 11
2.3.2 Structural Equation Models (SEM) 12

2.4 Causal Structure Learning . 14
2.4.1 Class 1: Learning the Markov Equivalence Class 14
2.4.2 Class 2: Leveraging the non-Gaussian noise 16

3 Heavy-Tailed Distributions 19
3.1 Intuition . 19
3.2 Scale invariance and power-law . 21
3.3 Approximately scale invariance and regularly varying distributions 22
3.4 Formalizing the catastrophe principle . 24

4 Method 27
4.1 Intuition . 27
4.2 Properties of Γij . 27

4.2.1 Setup . 27
4.2.2 Results . 28

4.3 Examples . 31
4.4 Structure Learning . 35

5 Simulations 41
5.1 Learning a Topological Order . 41

5.1.1 Q-performance . 41
5.1.2 Topological matrix . 41
5.1.3 Simulation 1 - Simple chain . 42
5.1.4 Simulation 2 - Polytree . 43
5.1.5 Simulation 3 - Non-Polytree . 44
5.1.6 Simulation 4 - Graph with confounders 44

5.2 Some comments . 45

6 Conclusions 59

Appendix 59

A Proofs 61
A.1 Proof of Proposition 2.1.0.9 . 61
A.2 Proof of Proposition 2.3.2.2 . 61
A.3 Proof of Proposition 3.2.0.3 . 61
A.4 Proof of Proposition 3.3.0.3 . 62

CONTENTS ix

A.5 Proof of Proposition 3.3.0.5 . 63
A.6 Proof of Lemma 3.4.0.1 . 63
A.7 Proof of Lemma 3.4.0.2 . 64

B Probability Theory 65

x LIST OF FIGURES

List of Figures

2.2 Parents of B (red) − Children of B (green) 5
2.11 Left: Joint distribution P (X1, X2) generated by the SEM 2.4.2.1. The linear

regression of X2 on X1 (respectively of X1 on X2) is shown as a blue (resp.
red) line. Middle: Residuals X2 − f(X1) are independent of X1. Right:
Residuals X1 − g(X2) depend on X2. 18

3.1 Exponential tail (red) and Pareto tail (blue) 20

4.1 X1 causes X2 . 28
4.2 Causal Bayesian Network with a confounder XC 37

5.1 Causal Bayesian Network - Simple chain . 42
5.2 Causal Bayesian Network - Polytree . 43
5.3 Causal Bayesian Network - Non-Polytree . 44
5.4 Causal Bayesian Network - Graph with confounders 44
5.5 Simple chain. Topological matrices for n = 1000, α = 1, b = 2 48
5.6 Polytree. Topological matrices for n = 10000, α = 5, b = 2 51
5.7 Non-Polytree. Topological matrices for n = 1000, α = 1, b = 3 54
5.8 Graph with confounders. Topological matrices for n = 10000, α = 5,

b = 1 . 57

LIST OF TABLES xi

List of Tables

5.1 Simple chain. Q-performance for Drop algorithm 46
5.2 Simple chain. Q-performance for Regress algorithm 46
5.3 Simple chain. Q-performance for Remove algorithm 47
5.4 Simple chain. Q-performance for Fast algorithm 47
5.5 Polytree. Q-performance for Drop algorithm 49
5.6 Polytree. Q-performance for Regress algorithm 49
5.7 Polytree. Q-performance for Remove algorithm 50
5.8 Polytree. Q-performance for Fast algorithm 50
5.9 Non-Polytree. Q-performance for Drop algorithm 52
5.10 Non-Polytree. Q-performance for Regress algorithm 52
5.11 Non-Polytree. Q-performance for Remove algorithm 53
5.12 Non-Polytree. Q-performance for Fast algorithm 53
5.13 Graph with confounders. Q-performance for Drop algorithm 55
5.14 Graph with confounders. Q-performance for Regress algorithm 55
5.15 Graph with confounders. Q-performance for Remove algorithm 56
5.16 Graph with confounders. Q-performance for Fast algorithm 56

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Problem and Motivation

Consider a random vector X = (X1, . . . , Xp) with a heavy-tailed distribution. Suppose
you observe some iid copies of X and you want to reconstruct the causal relations be-
tween the Xi, i = 1, . . . , p. We will show a method to estimate a causal order for the
variables by exploiting their heavy-tailed distribution. Inferring causal relations is one of
the primary goals of the scientific method. Randomized experiments have always been
the gold standard when it comes to detecting causal effects between variables. In the
last decades, Judea Pearl has introduced a framework to establish when it is possible to
infer causality from observational data, i.e., without doing any experiment. This aspect
has many practical advantages whenever it is not possible to run randomized controlled
trials (for ethical of practical reasons). Some domains which deal with these issues are
medicine and genetics for example. Potential areas of application of causality combined
with heavy-tailed data are, for example, financial markets or environmental catastrophes.

Establishing causal relations from simple observations is hard. There are situations in
which two different causal structures can generate the same observational data, for example
in the case of Gaussian noise in a linear Structural Equation Model (SEM). In this setup, it
is impossible to recover the causal structure just by observing the data. Many approaches
to solving this problem aim to estimate a class of plausible causal structures (called Markov
Equivalence class) rather than zeroing in on a unique causal order. Spirtes, Glymour,
Scheines, Heckerman, Meek, Cooper, and Richardson (2000) proposed the first algorithms
in this direction.

A different approach to the problem is to assume that the noise of the SEM in non-
Gaussian and to exploit this “asymmetry” to detect causal relations in the data. Among
these methods, we recall LiNGAM-algorithm of Shimizu, Hoyer, Hyvärinen, and Kerminen
(2006). Based on the ideas of Independent Component Analysis (ICA) (Comon, Jutten,
and Herault, 1991), the algorithm manages to estimate the causal ordering and the causal
effects between the variables by assuming non-Gaussian noise in the SEM.

This thesis introduces a method tailored on heavy-tailed data, to estimate the causal
ordering of a set of variables. We start with the idea of Engelke et al. (2018), who
propose a binary coefficient Γ to detect the causal direction for pairs of variables. Under
certain conditions, the Γ coefficient can also detect the presence of a hidden confounder, by

1

2 Introduction

exploiting the heavy-tail assumption. We build on this idea, and we prove some properties
of the Γ coefficient in a linear SEM with an arbitrary number of variables. We also prove
that, under certain assumptions, it is possible to identify the exogenous variable of a linear
SEM. Based on these results, we build four competing algorithms to recover the causal
order from observational data.

1.2 Outline

In Chapter 2 we present the background material of Causal Inference, reviewing the pri-
mary results in the field. Chapter 3 is devoted to motivate and introduce the required
background for heavy-tailed distributions and in particular regularly varying distributions.
The central part starts with Chapter 4, where we present a novel method to estimate a
causal order from heavy-tailed data. In this chapter, we prove the main results for the
Γ coefficient, and we construct four competing algorithms. In Chapter 5 we compare the
four algorithms and assess their performance in simulations. Also, we test empirically
whether the algorithms can deal with hidden confounding variables.

1.3 Contributions

This thesis builds upon the idea of Engelke et al. (2018). In their paper, they present a
binary coefficient Γ to detect the causal direction for pairs of heavy-tailed variables. Also,
they show how to compute the Γ coefficient for an SEM of two variables and one hidden
confounder. We extend this result to the case of p variables, under the assumption of
regularly varying distribution for the noise (proposition 4.2.2.2). Based on this, we prove
that it is possible to detect the source node of a linear SEM with no hidden confounders
(lemma 4.3.0.5 and lemma 4.4.0.1). We introduce four competing algorithms to recover
the causal order from observational data. We test these algorithms on some simulated
SEMs to assess their sample properties.

To summarise our contributions:

1. We prove the population properties of the Γ coefficient for a random vector X =
(X1, . . . , Xp) modeled by a linear SEM. We assume that the β’s are positive and the
noise distribution is regularly varying (a subclass of heavy-tailed data).

2. In the population case, we prove that it is possible to identify the source node of a
linear SEM (under the same assumptions of point 1). In our proof, we do not allow
for hidden confounders.

3. We build four algorithms to estimate the causal order of a random vector X =
(X1, . . . , Xp) from observational data (under the same assumptions of point 1)1.

1All results are fully reproducible in R. The code is available upon request, and we plan to publish it
on Github.

Chapter 2

Causality

In this chapter, we review the necessary background in Causal Inference to better the
results of Chapter 4. The presentation of the material is based on the Causality lectures
held by Professor Maathuis (2017) and Professor Meinshausen (2018) at ETH Zurich.

2.1 Graphs

We start by reviewing some definitions in Graph Theory.

• A graph G = (V,E) is a pair that consists of a set of vertices (nodes) V and a set
of edges E ⊆ V × V .
• An edge (i, j) ∈ E is called undirected if (i, j) ∈ E and (j, i) ∈ E. We denote it

with i ∼ j
• An edge (i, j) ∈ E is called directed if (i, j) ∈ E and (j, i) /∈ E. We denote it with
i→ j
• A graph G is called undirected if all its edges are undirected
• A graph G is called directed if all its edges are directed
• For each pair of nodes i, j ∈ V , there is at most one edge
• For two nodes i, j ∈ V , i is a parent of j if i→ j
• For two nodes i, j ∈ V , i is a child of j if i← j
• Two nodes i, j ∈ V are said to be adjacent if i→ j or i← j
• Given a node i ∈ V , we call pa(i) the set of its parents, ch(i) the set of its children

and adj(i) the set of its adjacent nodes1

• A node i ∈ V with no parents is called root node (or source node)
• A path in G is a sequence of (at least two) distinct vertices i1, ..., in, such that there

is an edge between ik and ik+1, for k = 1, ..., n− 1. 2

• A directed path is a path in which ik → ik+1 for k = 1, ..., n− 1
• A (directed) n-cycle is a (directed) path of length n in which i1 = in
• A directed acyclic graph (DAG) is a directed graph that contains no directed

cycles
• A fully connected DAG is a DAG where all pairs of vertices are joined by a

directed edge

1Sometimes, we write pa(i, G), ch(i, G) and adj(i, G) to emphasize the dependence on G
2By abuse of notation, we denote that an edge (l, k) ∈ E belongs to a path p by writing (l, k) ∈ p.

3

4 Causality

• For two nodes i, j ∈ V , i is an ancestor of j if there exists a directed path between
i and j
• For two nodes i, j ∈ V , i is a descendant of j if there exists a directed path between
j and i 3

• Given a node i ∈ V , we call an(i) the set of its ancestors and desc(i) the set of its
descendants

• Given a node i ∈ V , we define nonan(i) := V \ an(i) the set of its non-ancestors
and nondesc(i) := V \ desc(i) the set of its non-descendendant

• Three nodes are called a v-structure if one node, say i ∈ V , has two parents that
are themselves not adjacent. In this case, we say that i is a collider
• A path between i and j is blocked by S ⊂ V (not containing i or j) if at least one

of the following holds:
– There is a non-collider on the path that is in S
– There is a collider on the path and neither this collider (nor any of its descen-

dants) is in S
• Two nodes i, j ∈ V are d-separated by S ⊂ V , d-sep(i, j;S), if all paths between i

and j are blocked by S. Otherwise they are d-connected, d-conn(i, j;S).
• An undirected graph G is a tree if between any pair of nodes i, j ∈ V there exists

one and only one path
• The skeleton of a DAG G is the undirected graph obtained by removing the edge

directions
• A DAG G is a polytree if its skeleton is a tree

Below we present some examples to describe the most important properties of a graph.

Example 2.1.0.1 (Undirected and Directed Graphs).

A

B

C

D E

(a) Undirected graph

A

B

C

D E

(b) Directed graph

3By definition, we say that each node is an ancestor and a descendant of itself.

2.1 Graphs 5

Example 2.1.0.2 (Parents and Children).

A

B

C

D E

Figure 2.2: Parents of B (red) − Children of B (green)

Example 2.1.0.3 (Path and Directed Path).

A

B

C

D E

(a) Path (green)

A

B

C

D E

(b) Directed path (red)

Example 2.1.0.4 (Directed Cyclic and Acyclic Graph).

A

B

C

D E

(a) Directed Cyclic Graph

A

B

C

D E

(b) Directed Acyclic Graph
(DAG)

6 Causality

Example 2.1.0.5 (Ancestors and Descendants).

A

B

C

D E

(a) Ancestors of C (red)

A

B

C

D E

(b) Descendants of A (green)

Example 2.1.0.6 (Polytree and Non-Polytree).

A

B

C

D E

(a) Polytree

A

B

C

D E

(b) Non-Polytree

2.1 Graphs 7

Example 2.1.0.7 (Blocked Paths and d-separation).

A

B

C

D E

(a) Path A to D (red) is
blocked; d-sep(A,D; ∅)

A

B

C

D E

(b) Path A to C (green) is
open; d-conn(A,C; ∅)

A

B

C

D E

(c) Observing B, path
A to D (green) is open;
d-conn(A,D; {B})

A

B

C

D E

(d) Observing B, path
A to C (red) is blocked;
d-sep(A,C; {B})

A

B

C

D E

(e) Observing E, path
A to D (green) is open;
d-conn(A,D; {E})

A

B

C

D E

(f) Observing E, path
A to C (green) is open;
d-conn(A,C; {E})

At this point, we introduce an important definition for a DAG, called topological (or
causal) order, as presented in Peters, Janzing, and Schölkopf (2017), Appendix B, Defi-
nition B.1.

Definition 2.1.0.8. Given a DAG G, we call a permutation, that is, a bijective mapping,

π : {1, . . . , p} → {1, . . . , p},

a topological (or causal) order if it satisfies

8 Causality

π(i) < π(j) for all i ∈ an(j)

Due to the acyclicity of a DAG, we can always find a topological order4. This result is
given in the following proposition.

Proposition 2.1.0.9. For each DAG G = (V,E), there is always a topological order.

The proof can be found in Appendix A.1.

It is also interesting to note that for a DAG, the topological order need not be unique.
We can see this in the following example.

Example 2.1.0.10. Here we show two DAGs. The one on the left has only one valid
topological order, namely π = (1, 4, 2, 3). The one on the right has four valid topological
orders, which are π1 = (1, 4, 2, 3), π2 = (1, 3, 2, 4), π3 = (1, 2, 3, 4) and π4 = (2, 1, 3, 4).

1 3 4 2

(a)

1 3 4 2

(b)

Most of the times, we think of a graph as a set of nodes connected by some edges. However,
it is often useful to represent a graph using a special matrix called adjacency matrix.
We will encounter this matrix (and some variations of it) again in Chapter 5.

Definition 2.1.0.11. Let G = (V,E) be a DAG with p vertices. We define the matrix
A ∈ {0, 1}p×p an adjacency matrix if it satisfies

Aij =

{
1, if i→ j
0, else

2.2 Bayesian Networks

When we combine DAGs, random variables and probabilities, we come up with an object
that plays a central role in Causal Inference, namely the Bayesian Network.

Definition 2.2.0.1. Let G = (V,E) be a DAG with p nodes. Let X = (Xi), i ∈ V be a
set of random variables indexed by V 5 that follow a joint distribution P with density f .
Then, we call the pair (G,P) a Bayesian Network if the distribution P factorizes6,

f(x1, . . . , xp) =
p∏
i=1

f(xi| xpa(i))

4For convenience, we denote π = (1, 3, 2, 4) the topological order π : {1, 2, 3, 4} → {1, 3, 2, 4}
5Sometimes, with abuse of notation, we write Xi to refer to node i.
6We use ”P factorizes as ...” to say ”Given a joint distribution P with density f , f factorizes as ...”.

2.2 Bayesian Networks 9

It is important to note that each joint distribution P factorizes according to a fully con-
nected DAG G′. In other words, any distribution P with density f can be written as
f(x1, . . . , xp) =

∏p
i=1 f(xi| xpa(i,G′)), where G′ is a fully connected DAG. Also, for some

distribution P it is possible to find more than one valid Bayesian Network, as we show
in the following example.

Example 2.2.0.2. Let X = (X1, X2, X3) be a random vector that follows a joint distri-
bution P with density f . Assume that X1 is conditionally independent of X3 given X2,
i.e., f(x1, x3| x2) = f(x1| x2) f(x3| x2). We see that P can factorize according to three
Bayesian Networks

1 2 3

(a) BN1 = (G1, P)

1 2 3

(b) BN2 = (G2, P)

1 2 3

(c) BN3 = (G3, P)

For BN1 we have:

f(x1, x2, x3) = f(x1) f(x2| x1) f(x3| x1, x2)
= f(x1) f(x2| x1) f(x3| x2)

For BN2 we have:

f(x1, x2, x3) = f(x3) f(x2| x3) f(x1| x3, x2)
= f(x3) f(x2| x3) f(x1| x2)

For BN3 we have:

f(x1, x2, x3) = f(x2) f(x1| x2) f(x3|x2, x1)
= f(x2) f(x1| x2) f(x3| x2)

The following definitions are particularly relevant, as they put in relation the world of
graph theory with the world of probability theory.

Definition 2.2.0.3. Let X ∈ Rp ∼ P be a random vector and let G = (V,E) be a DAG.
Then, the joint distribution P is said to satisfy the Local Markov property with respect
to G if and only if

Xi ⊥⊥ Xnondesc(i)\pa(i)| Xpa(i), ∀i ∈ V

In words, every node is independent of its non-descendants given its parents.

10 Causality

Definition 2.2.0.4. Let X ∈ Rp ∼ P be a random vector and let G = (V,E) be a DAG.
Then, the joint distribution P is said to satisfy the Global Markov property with respect
to G if and only if

If A and B are d-separated by S, then XA ⊥⊥ XB| XS

where A ⊂ V , B ⊂ V , and S ⊂ V . In words, any d-separation that we read from the graph
G implies a conditional independence in the distribution P . For this reason we also say
that G is an Independence Map (I-Map) of P .

Definition 2.2.0.5. Let X ∈ Rp ∼ P be a random vector and let G = (V,E) be a DAG.
Then, the joint distribution P is said to satisfy the Markov factorization property
with respect to G if and only if

f(x1, . . . , xp) =
p∏
i=1

f(xi| xpa(i))

where we assume that P has a valid density f .

A significant result states that the three definitions above are equivalent if the joint dis-
tribution P has a positive and continuous density f (see Theorem 5, Section 3.2.1., Pearl
(1988)).

We can see that the Global Markov property works only in one direction. More precisely,
if two nodes in the graph are d-separated, then we know that the corresponding random
variables are conditionally independent but not the other way round. It would be nice
to have a one-to-one correspondence between the d-separation from the graph and the
conditional independence from the distribution. For this reason, we introduce the concept
of Faithfulness.

Definition 2.2.0.6. Let X ∈ Rp ∼ P be a random vector and let G = (V,E) be a DAG.
Then, the distribution P is said to be faithful to the graph G if and only if

If XA ⊥⊥ XB| XS, then A and B are d-separated by S

for A ⊂ V , B ⊂ V , and S ⊂ V . In words, any d-connection that we read from the graph
G implies a conditional dependence in the distribution P .

When we assume both the Global Markov property and faithfulness, we are sure
that there is a one-to-one correspondence between the d-separations in the graph and the
conditional independences in the distribution. In this case, we say that the DAG G is a
Perfect Map of P . This is very useful when we want to infer the graph structure from
observational data.

2.3 Causal Bayesian Networks

Suppose we observe (X1, Y1), . . . , (Xn, Yn) i.i.d. copies of (X,Y). When we want to study
the association between X and Y , we try to model:

2.3 Causal Bayesian Networks 11

• P (Y | X = x) for a classification problem
• E[Y | X = X] for a regression problem

However, this is not enough when we want to talk about causation. In fact, we should
remember the adage: “association does not imply causation”. If we want to make causal
statements, we must add new toolkits to our arsenal. We start with a provisional definition
of causal effect.

Definition 2.3.0.1 (Provisional definition). We say that X has a causal effect on Y if
intervening on X has an effect on the distribution of Y .

Here, we are trying to answer a more ambitious question than simply modeling a condi-
tional probability (or expectation). We want to understand how the system changes under
specific actions/interventions. Most of the times, however, we are not allowed to actively
manipulate the system (e.g., for ethical or practical reasons), and we only have access to
observations generated by the system. The three tools used to tackle these kinds of issues
are:

1. Causal Bayesian Networks and do-calculus
2. Structural Equation Models (SEM)
3. Counterfactuals and potential outcomes

In this thesis, we present only the first two points.

2.3.1 Causal Bayesian Network and do-calculus

We introduce the notation do(X = x̃) to represent a hypothetical intervention where X is
set to the value x̃ uniformly over the entire population.

• f(y| do(X = x̃)) denotes the marginal density of Y after we intervene on X and set
it to x̃, i.e., do(X = x̃).

Definition 2.3.1.1 (Formal definition). Let (X,Y) be a random vector that follows a joint
distribution P with density f . We say that X has a causal effect on Y if f(y| do(X = x̃))
depends on x̃.

In other words, there exists x′ 6= x̃ such that

f(y| do(X = x′)) 6= f(y| do(X = x̃))

Definition 2.3.1.2. Let G = (V,E) be a DAG. Let X = (Xi), i ∈ V , be a random vector
that follows a joint distribution P with density f . Let P factorize according to G. We say
that (G,P) is a Causal Bayesian Network if

f(x1, . . . , xp|do(XW = x̃w)) =

{ ∏
i/∈V \W f(xi| xpa(i,G)), if XW = x̃w

0, else

=
∏

i/∈V \W
f(xi| xpa(i,G)) 1[XW = x̃w]

12 Causality

where W ⊂ V .

From definition 2.3.1.2, we see that manipulatingXW only modifies the terms f(xj | xpa(j,G))
into 1[Xj = x̃j], for j ∈ W . All other terms remain unchanged. In this regard, we can
say that the intervention acts “locally” on the data generating process and the system is
modular (see for example Haavelmo (1944)). Some authors, such as Peters et al. (2017),
describe this property as the principle of independent mechanisms.

Example 2.3.1.3. Consider the causal Bayesian Network (CBN) shown in the figure
below. Let (X,Y) be a discrete random vector that follows a joint distribution P with
probability mass function (pmf) f .

X Y

From definition 2.3.1.2, we know that f(x, y| do(X = x̃)) = f(y|x) 1[X = x̃]. Hence, we
can compute the marginal of Y when we intervene on X and the marginal of X when we
intervene on Y .

• Marginal of Y : f(y| do(X = x̃)) =
∑
x f(x, y| do(X = x̃)) =

∑
x f(y|x) 1[x =

x̃] = f(y|x̃). In this case, we see that the (observational) conditional pmf f(y|x̃) is
equal to the (interventional) pmf f(y| do(X = x̃)). In this situation, if X and Y are
correlated, then X causes Y . In fact, if f(y| x̃) depends on x̃ so does f(y| do(X = x̃))
(and vice-versa).

• Marginal of X: f(x| do(Y = ỹ)) =
∑
y f(x, y| do(Y = ỹ)) =

∑
y f(x) 1[y = ỹ] =

f(x)
∑
y 1[y = ỹ] = f(x). Where the second equality follows from the definition of

CBN. In this case, we observe that f(x| do(Y = ỹ)) does not depend on ỹ and hence
Y does not cause X.

Note that in general, the interventional distribution is different from the conditional distri-
bution. Regarding the modularity, we note that every time we intervene on one variable,
we only affect a limited part of the mechanism. Recall that the joint pmf in the example
equals f(x, y) = f(x) f(y|x). When we manipulate X = x̃, we obtain a modified system
in which only the term f(x) is affected: f(x, y| do(X = x̃)) = 1[X = x̃]f(y|x). In this
regard, we say that the mechanisms f(x) and f(y|x) are independent (see Peters et al.
(2017), Section 2.1).

2.3.2 Structural Equation Models (SEM)

Another way to represent a causal system is by using Structural Equation Models
(SEMs). SEMs describe a generating mechanism by modeling each variable as a function
of its parental graph and some noise.

Definition 2.3.2.1. Let G = (V,E) be a DAG. Let X = (Xi), i ∈ V , be a random vector.
Assume that each Xi is generated by some function of its parents and noise Yi. An SEM
is a pair S = (S, PY),

Si : Xi ← hi(Xpa(i,G), Yi), for all i ∈ V

2.3 Causal Bayesian Networks 13

where S = {S1, . . . , Sp} is a set of equations and PY is the joint distribution of the inde-
pendent noise Yi, for i ∈ V .

Here, we interpret the assignment operator “←” as we do in programming. Hence, we can
generate each variable only after its ancestors are assigned a value. The graph of an SEM
is obtained by drawing direct edges from each variable occurring on the right-hand side of
the equations to the variables on the left-hand side. In this way, we hand up with a DAG.

Proposition 2.3.2.2. Let G = (V,E) be a DAG. Let X = (Xi), i ∈ V , be a random
vector. Assume that there is an SEM related to G. Due to the acyclic structure, an SEM
defines a unique distribution over XV such that Xi = hi(Xpa(i,G), Yi), in distribution, for
all i ∈ V .

The proof can be found in Appendix A.2.

In case of an SEM, it is very straightforward to account for intervention: all we need to
do is reassigning the value of the variables that we manipulate.

Example 2.3.2.3. Consider the following DAG G,

X1 X2

and the related SEM,

X1 ← Y1

X2 ← h2(X1, Y2)

for some function h2. Suppose we make an intervention and we set X1 ← x̃1. We reflect
this change in the SEM as follows:

X1 ← x̃1

X2 ← h2(X1, Y2)

This is equivalent to the operator do(X1 = x̃1) that we saw in the section 2.3.1. Also, we
note here the modularity of the system.

To summarise, the connection between SEM and CBN goes as follows. We start with a
DAG G = (V,E) and a set of random variables X = (Xi), where i ∈ V . We assign a
value to each random variable, using the SEM Xi ← hi(Xpa(i,G), Yi). This set of equations
defines a unique distribution P over XV that factorizes according to G, so we have a
Bayesian network (G,P). When we consider interventions, as shown in example 2.3.2.3,
we obtain a CBN.

In the particular case where all the equations are linear and additive in the noise, we can
quickly read off from the SEM (or equivalently from the CBN) the causal effects between
the variables. Below we present an example of a linear SEM.

14 Causality

Example 2.3.2.4. Consider the DAG G,

X1 X2 X3

X4 X5

1 -1

1 2 1 -1

With related SEM,

X1 ← Y1

X5 ← Y5

X4 ← (1) ·X1 + Y4

X2 ← (1) ·X1 + (2) ·X4 + (1) ·X5 + Y2

X3 ← (−1) ·X2 + (−1) ·X5 + Y3

We see that X1 is cause of X2, X3 and X4, since they are connected by a directed path
starting from X1. To compute the direct causal effect, it suffices to read off the coefficients
on the directed edges. For example, X1 has a direct causal effect of 1 on both X2 and X4.
To compute the total causal effect of Xi on Xj , we must:

a. multiply the edge coefficients along each directed path from i to j

b. sum up the results over all paths

For example, the total causal effect of X1 on X2 equals to 1 · 2 + 1 = 3. We see that
1 · 2 is the causal effect along the directed path X1, X4, X2, whereas 1 is the direct causal
effect of X1 on X2. If we want to compute the total causal effect of X1 on X3 we obtain
1 · (−1) + 1 ·2 · (−1) = −3. In this case, 1 · (−1) is the causal effect along the directed path
X1, X2, X3, whereas 1 · 2 · (−1) is the causal effect along the directed path X1, X4, X2, X3.

2.4 Causal Structure Learning

In this section, we review the main methods to infer the causal structure from observational
data. As noted by Goudet, Kalainathan, Caillou, Lopez-Paz, Guyon, Sebag, Tritas, and
Tubaro (2017), these methods can be divided into two classes: those based on the Markov
properties of a DAG and those based on the non-Gaussianity of the noise distribution.

2.4.1 Class 1: Learning the Markov Equivalence Class

In example 2.2.0.2, we have seen that different Bayesian Networks can describe the same
distribution P . Thus, from the knowledge of P alone, often we cannot reconstruct an
exact DAG. What we can do is to identify a class of DAGs that represent a plausible
causal structure of the given data. Recalling example 2.2.0.2, if (X1, X2, X3) ∼ P such
that X1 ⊥⊥ X3| X2, then we know that the plausible DAGs are:

2.4 Causal Structure Learning 15

1 2 3

(a)

1 2 3

(b)

1 2 3

(c)

On the other hand, if we know that X1 ⊥⊥ X3 then we can infer that the unique DAG G
that is an I-Map for P is:

1 2 3

This example leads to the following definition.

Definition 2.4.1.1. Two DAGs G1 and G2 are said Markov Equivalent (G1, G2) ∈ME
if they describe the same set of d-separations.

The Markov Equivalence property describes an equivalence relation ME over DAGs.
Hence, given a DAG G, it is possible to define the Markov Equivalence class [G] :=
{g| (g,G) ∈ME}. An important result from Vermat and Pearl (1990) states that all DAGs
in a Markov Equivalence class share the same skeleton and the same v-structures. To
represent equivalence classes of DAGs pictorially we introduce the concept of CPDAG.7

Definition 2.4.1.2. Let G = (V,E) be a DAG and [G] its Markov Equivalence class.

We define CPDAG a graph with the following properties:

• There is an edge between i and j if and only if i and j are d-connected given S,
S ⊂ V \ {i, j}, for all g ∈ [G]

• There is a directed edge from i to j if and only if i is a parent of j for all g ∈ [G]

• There is an unidentified edge between i and j if and only if there is a DAG g ∈ [G]
with i→ j and a DAG g′ ∈ [G] with i← j

where i, j ∈ V

Constraint-based methods are all those algorithms that exploit conditional indepen-
dences between variables to learn the CPDAG. One of the first constraint-based methods
is the SGS-algorithm of Spirtes, Glymour, and Scheines (1990). SGS-algorithm starts
from a fully connected graph. First, it tries to recover the skeleton of the graph, running
d-separation tests between all pair of adjacent nodes given some subset of the remaining
nodes. Secondly, it identifies v-structures. Finally, it orients as many of the remaining
nodes as possible. The problem with this method, however, is the algorithmic complexity.
As stated by Spirtes et al. (2000), in the worst case, the SGS-algorithm requires a number
of d-separation tests that increases exponentially with the number of vertices.

An improvement over the SGS-algorithm is given by the PC-algorithm of Spirtes et al.
(2000), which reduces the number of d-separation tests. The idea is the following. Starting
from a fully connected graph, for each pair of adjacent nodes (i, j) the algorithm removes
an edge if Xi and Xj are conditionally independent given some subset of size k = 0, 1, . . . of
adj(i) or adj(j). Once the skeleton is recovered, PC-algorithm determines the v-structures
and finally directs as many edges of the remaining ones as possible.

7The definition is based on the Lecture Notes of the Causality course held by Professor Maathuis (2017).

16 Causality

The FCI-algorithm of Spirtes, Meek, and Richardson (1995) extends PC-algorithm to the
case of latent variables. A further improvement is given by RFCI-algorithm of Colombo,
Maathuis, Kalisch, and Richardson (2012), which deals with both latent variables and
high-dimensional DAGs.

Score-based methods are all those algorithms that learn the CPDAG by minimizing a
particular score. Some methods aim at minimizing a Likelihood score. Other methods,
like the Greedy Equivalent Search (GES) algorithm of Chickering (2002), add a penal-
ization term to the score using the Bayesian Information Criterion, in order to keep the
CPDAG as sparse as possible. An improvement is given by the Fast Equivalent Search
(FGES) algorithm of Ramsey (2015), which speeds up the computation using different
data structures compared to GES-algorithm.

2.4.2 Class 2: Leveraging the non-Gaussian noise

These classes of algorithm exploit the non-Gaussianity of the noise to infer the causal
structure of the observational data.

The first approach in this direction is given by Shimizu et al. (2006), with the LiNGAM-
algorithm, which stands for Linear non-Gaussian Acyclic Models. The presentation is
based on the Lecture Notes of the Causality course held by Professor Maathuis (2017).
The starting point is a linear SEM related to a DAG G = (V,E).

Xi ←
∑
j∈V

βijXj + Yi, ∀i ∈ V

Since the SEM specifies a DAG G, there exists a topological order π (see proposition
2.1.0.9), such that we can write:

Xi ←
∑

π(j)<π(i)

βijXj + Yi, ∀i, j ∈ V

If we write this in matrix form, we obtain a linear system with a strictly lower triangular
matrix:

X ← BX + Y

where X,Y ∈ Rp and B ∈ Rp×p. The non-zero entries in the B matrix are equivalent to
the edges in the DAG. Moreover, due to acyclicity, there is an ordering of the variables (a
topological order) such that B is strictly lower triangular. Regarding the noise Yi, i ∈ V ,
LiNGAM makes the following assumptions:

• Mutually independent (no hidden variables)
• Mean zero
• Non-zero variance
• Non-Gaussian distribution

2.4 Causal Structure Learning 17

Example 2.4.2.1. Consider the following SEM,

X3 ← Y3

X1 ← 3 ·X3 + Y1

X2 ← −5 ·X1 + Y2

Considering the topological order π = (2, 3, 1), the SEM can write in matrix form,

X :=

X3

X1

X2

←
0 0 0

3 0 0
0 −5 0

X3

X1

X2

 +

Y3Y1
Y2

 =: BX + Y

We see that matrix B is strictly lower triangular once the variables are arranged according
to a topological order.

Example 2.4.2.2. Consider the following SEMs,

X1 ← Y1

X2 ← 0.8 ·X1 + Y2
(2.4.2.1)

X2 ← Y2

X1 ← 0.8 ·X2 + Y1
(2.4.2.2)

Let the covariance matrix of X = (X1, X2) in both models be

Σ =

[
1 0.8

0.8 1

]

If we assume that Yi is Gaussian with mean zero, for i = 1, 2, then X = (X1, X2) ∼
N(0,Σ), in both models. We see that both models generate the same Gaussian distribu-
tion, even if they are causally different. We have a non-identifiability problem.

Instead, if we assume that Yi is non-Gaussian, for i = 1, 2, then we have a chance to
identify the causal structure from the data. Consider figure 2.11.

18 Causality

X2 = f(X1)

X1 = g(X2)

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

X1

X
2

−0.50

−0.25

0.00

0.25

0.50

0.00 0.25 0.50 0.75 1.00

X1

X
2

−
f(

X
1)

−0.3

0.0

0.3

0.0 0.5 1.0 1.5

X2

X
1

−
g(

X
2)

Figure 2.11: Left: Joint distribution P (X1, X2) generated by the SEM 2.4.2.1. The linear
regression of X2 on X1 (respectively of X1 on X2) is shown as a blue (resp. red) line.
Middle: Residuals X2 − f(X1) are independent of X1. Right: Residuals X1 − g(X2)
depend on X2.

Suppose that X1 causes X2 as shown in the SEM 2.4.2.1. If we assume that the noise
Yi ∼ U [0, 1] is uniformly distributed, for i = 1, 2, then we can infer the causal direction
from the data. Indeed, if we regress X2 on X1, the residuals look independent of X1.
On the other hand, if we regress X1 on X2, then the residuals do depend on X2. This
asymmetry can be exploited to infer the causal direction X1 → X2.

The first version of LiNGAM (Shimizu et al., 2006), called ICA-LiNGAM, is closely related
to Independent Component Analysis (ICA) (Comon et al., 1991). This method has the
advantage of exploiting the well-known techniques for ICA. For this reason, it is compu-
tationally efficient. As a downside, however, the algorithm may converge to local optima,
as it happens in most ICA-based algorithms. An improvement over ICA-LiNGAM is Di-
rect-LiNGAM of Shimizu, Inazumi, Sogawa, Hyvärinen, Kawahara, Washio, Hoyer, and
Bollen (2011). The steps are the following:

1. Find an exogenous variable (i.e., a root node) based on its independence from the
residuals of all pairwise regressions between the variables.

2. Remove the effect of the root node from the other variables using least square re-
gression.

3. Repeat points 1. and 2. on the residuals of the remaining variables, until no variables
are left.

4. Return a causal order π of the variables.
5. Build a strictly lower triangular matrix B, following the causal order π.
6. Run sparse regression (see Tibshirani (1996)) to determine the zero coefficients in

the B matrix. More precisely, regress each variable on its predecessors in the causal
order π

Before closing the chapter, we want to highlight the following. The algorithms that we
present in Chapter 4 were inspired in part by the reading of Direct-LiNGAM of Shimizu
et al. (2011).

Chapter 3

Heavy-Tailed Distributions

In this chapter, we will talk about heavy-tailed distributions and in particular regularly
varying distributions. We start by giving some intuition and real-life properties related to
heavy-tailed distributions. Next, we formalize these ideas and present some meaningful
results that will be used in Chapter 4.

3.1 Intuition

In order to understand heavy-tailed distributions, we think it is a good idea to compare
them to the light-tailed distributions. Light-tailed distributions comprise most of the ones
usually taught in introductory Statistics courses, e.g., Gaussian and Exponential.

A first property that differentiates heavy-tailed distributions to light-tailed distributions
is the scale invariance. More precisely, regularly varying distributions have tails that
decay more slowly than exponential tails. Consider the Exponential distribution, which
is light-tailed, and the Pareto distribution, which has regularly varying tails. Denoting F
the right-tail cumulative distribution function, we have:

• Exponential: F (x) = e−λx, x ≥ 0
• Pareto: F (x) = cαx−α, x ≥ c

To understand why we say scale invariant, note that, if we scale up the x to y = 1000 · x,
we obtain F (y) = F (1000 · x) = cα(1000 · x)−α = 1000−αcαx−α = 1000−αF (x) = k ·F (x),
for x ≥ c/1000. Thus, changing the scale of x does not change the appearance of F (x). It
just gets rescaled by a constant factor (in our case k = 1000−α). In figure 3.1, we see the
difference between the Exponential and the Pareto tail.

The second aspect we want to discuss is the catastrophe and the conspiracy principle,
two definitions proposed by Nair, Wierman, and Zwart (2018). To understand the two
ideas, we give an example based on Nair et al. (2018). Suppose you are told that there are
five people in a room that you have never seen before. Also, you are given the following
information: the total height of the five people is ten meters, and the total number of their
followers on Instagram is ten million. Without even seeing the group, you will presume that
the total height of ten meters is due to most of the people being around two meters tall. It
could be a basketball team. Most likely, you would never think that the sum of ten meters
stems from four people 1.8 meters tall and one giant 2.8 meters tall. You expect the sum is

19

20 Heavy-Tailed Distributions

Pareto

Exponential
0.0

0.2

0.4

0.6

0 2 4 6 8

x

Figure 3.1: Exponential tail (red) and Pareto tail (blue)

generated by most of the people being quite tall, but nobody being a giant. In other words,
you suppose that the group average is a reasonable approximation of the samples you will
encounter. We call this phenomenon conspiracy principle. Many people slightly taller
than usual, “conspire” together to generate a rather extreme overall height. Light-tailed
distributions share this property. For example, height is usually modeled as a Gaussian
random variable.

Let us consider now the Instagram followers. Without even seeing the five people, you will
assume that there is a celebrity among them, having around ten million followers. There is
only one cause of the unusually high number of followers. In this case, the sample average
is not a good approximation of the samples you will encounter. We define this phenomenon
catastrophe principle. The fundamental concept of the catastrophe principle is that
the maximum observation in the group “behaves” as the total sum.

To summarise with formulas,

1. Conspiracy principle: if X1 + · · ·+Xp is large, it is probably due to many slightly
bigger than average observations. Light-tailed distributions “obey” to this principle.

P (max(X1, . . . , Xp) > t)︸ ︷︷ ︸
tail of the max observation

= o[P (X1, . . . , Xp > t)]︸ ︷︷ ︸
tail of the sum

, as t→∞

2. Catastrophe principle: if X1 + · · ·+Xp is large, it is probably due to one unex-
pectedly large observation. Regularly varying distributions “obey” to this principle.

P (max(X1, . . . , Xp) > t)︸ ︷︷ ︸
tail of the max observation

∼ P (X1, . . . , Xp > t)︸ ︷︷ ︸
tail of the sum

, as t→∞

The third property that differentiates light-tailed from regularly varying distributions is
the residual waiting time. Suppose that you have already waited x minutes and you

3.2 Scale invariance and power-law 21

want to know what is the distribution of the residual waiting time. Let us define R(t, x) the
probability of waiting additional t minutes given that we have already waited x minutes.

R(t, x) := P [X > x+ t| X > x] =
P [X > x+ t,X > x]

P [X > x]

= P [X > x| X > x+ t]︸ ︷︷ ︸
=1

P [X > x+ t]

P [X > x]

=
P [X > x+ t]

P [X > x]
=
F (x+ t)

F (x)

where F = 1−F is the right-tail cumulative distribution function. If we model the residual
waiting time with the Exponential distribution F (x) = e−λx (i.e., light-tailed), with λ > 0
and x ≥ 0,

R(t, x) = e−λ(x+t) · e−λx = e−λt

which is independent of x. Hence we can say that the residual waiting time does not
depend on how long we have already waited1. Suppose now that we model the residual
waiting time with the Pareto distribution F (x) = cαx−α (i.e., regularly varying), with
c ≥ 0, α > 0 and x ≥ c. The distribution of the residual waiting time is:

R(t, x) = cα(x+ t)−α · cαx−α = (1 +
t

x
)−α

which is increasing in x. The more we have waited, the higher the probability of waiting
t additional minutes. A real-life example of this phenomenon is the waiting time for an
email response: if someone does not answer in a short amount of time, it is quite likely
that will not answer at all.

To summarise, we have seen three properties that distinguish light-tailed distributions
from regularly varying distributions.

1. Scale invariance
2. Conspiracy and catastrophe principle
3. Memorylessness and increasing residual life

In the rest of the chapter, we reintroduce these concepts more formally.

3.2 Scale invariance and power-law

The presentation that follows is based on Nair et al. (2018). Let us start by defining the
concept of scale invariance and power-law for a distribution.

1This is the well-known memorylessness property of the Exponential distribution.

22 Heavy-Tailed Distributions

Definition 3.2.0.1. A distribution function F is scale invariant if there exists a c ≥ 0
and a continuous function g such that

F (λx) = g(λ) F (x)

for all λ, x such that λx ≥ c, where F = 1− F .

From definition 3.2.0.1 we observe that the Pareto distribution is scale invariant. Recall
that its right-tail cumulative distribution function is F (x) = cαx−α, for x ≥ c. Thus,
F (x) = cα(λx)−α = λ−αcαx−α = λ−αF (x) = g(λ) F (x), for λx ≥ c.

Definition 3.2.0.2. A distribution function F is power-law if there exists a c ≥ 0, k ≥ 0
and α > 0 such that

F (x) = kx−α

for x ≥ c.

From definition 3.2.0.2 we see that the Pareto distribution is also power-law. If we set
k = cα ≥ 0, we obtain its right-tail cumulative distribution function F (x) = cαx−α, for
x ≥ c.

Scale invariance, though nice, is a special property. Indeed, as the next proposition states,
all scale invariant distributions have power-law tails, and thus only the Pareto distribution
belongs to this class.

Proposition 3.2.0.3. A distribution F is scale invariant if and only if F has a power-law
tail.

The proof can be found in Appendix A.3.

3.3 Approximately scale invariance and regularly varying
distributions

We have seen that a distribution is scale invariant if and only if it has power-law tails.
However, this class is extremely restricted, as it comprises only the Pareto distribution.
For this reason, we relax the definition and look at all those distributions that are scale
invariant only in the tails. We call them asymptotically scale invariant2.

Definition 3.3.0.1. A non-negative random variable X and its distribution F are said to
be asymptotically scale invariant if there exists a strictly positive, finite, and contin-
uous function g such that for any λ > 0,

lim
x→∞

F (λx)

F (x)
= g(λ)

2An important distribution that belongs to this class is the Student’s t.

3.3 Approximately scale invariance and regularly varying distributions 23

As we introduced the concept of asymptotically scale invariant distributions, it seems
reasonable to present those distributions that have approximately power-law tails. This
leads to the following definitions.

Definition 3.3.0.2. A positive (measurable) function f is called regularly varying (at
infinity) with index α ∈ R, f(x) ∈ RV (α), if and only if:

• it is defined on some neighborhood of infinity [x0,∞)

• limx→∞
f(λx)
f(x) = λα, for λ > 0

If α = 0, f is said to be slowly varying (at infinity), f(x) ∈ RV (0).

From the definition 3.3.0.2, if α = 0 we have a slowly varying function. These functions
can be thought to behave almost as constant at infinity. Also, they are the basic building
block to express any regularly varying function. The next result shows how to write any
regularly varying function as a product of a slowly varying and a power-law function.

Proposition 3.3.0.3. A function f is regularly varying with index α ∈ R, if and only if
it can be written as

f(x) = `(x)xα

where ` is a slowly varying function.

The proof can be found in Appendix A.4.

The result of proposition 3.3.0.3 highlights the fact that regularly varying functions can be
thought, approximately, as power-law functions, as they differ from them only by ` (which
can be treated as a “constant”).

Given this setup, we are ready to apply the concept of regularly varying functions to
random variables.

Definition 3.3.0.4. A non-negative random variable X and its distribution F are said to
be regularly varying with index α > 0, if the right-tail cumulative distribution function
F (x) = 1− F (x) writes

F (x) = `(x)x−α, as x→∞

where ` ∈ RV (0) be a slowly varying function. In other words F (x) ∈ RV (−α) as x→∞.

In the previous section, we saw that there is a one-to-one correspondence between scale
invariant and power-law distributions. Therefore, we also expect that asymptotically scale
invariant distributions are approximately power-law. This intuition is stated in the next
result (see Nair et al. (2018), Chapter 3.2).

Proposition 3.3.0.5. A distribution F is asymptotically scale invariant if and only if F
is regularly varying.

The proof can be found in Appendix A.5.

24 Heavy-Tailed Distributions

It is straightforward to integrate and differentiate the Pareto distribution because it is
a power-law. It would be nice if we could integrate and differentiate regularly varying
distributions as if they were power-laws. The next theorems 3.3.0.6 and 3.3.0.7 (for which
we do not give a proof) allow us to do so.

Theorem 3.3.0.6 (Karamata’s theorem). Supoose that ` ∈ RV (0) and that ` is bounded
on every compact subsets of [c,∞) for some c ≥ 0. Let f(x) = `(x)xα be RV (α). Then

(a) for α > −1 ∫ x

c
f(u) du ∼ x · f(x)

α+ 1
, as x→∞

(b) for α < −1 ∫ ∞
x

f(u) du ∼ −x · f(x)

α+ 1
, as x→∞

What the theorem says, intuitively, is the following. When x → ∞, a regularly varying
function f with index α behaves like a power function of degree α. For example, consider
the function f(x) = xα. If we let c = 0 and α 6= −1, we have:

(a) for α > −1 ∫ x

0
f(u) du =

xα+1

α+ 1
=
x · f(x)

α+ 1
, as x→∞

(b) for α < −1 ∫ ∞
x

f(u) du = − x
α+1

α+ 1
= −x · f(x)

α+ 1
, as x→∞

Theorem 3.3.0.7 is the corresponding version of Karamata’s theorem for differentiation
(see Embrechts, Klüppelberg, and Mikosch (2013), Theorem A3.7).

Theorem 3.3.0.7 (Monotone density theorem). Let U(x) =
∫ x
0 u(y) dy (or

∫∞
x u(y) dy)

where u is ultimately monotone (i.e., u is monotone on (z,∞) for some z > 0). If

U(x) ∼ c · xα`(x), as x→∞

with c ≥ 0, α ∈ R and ` ∈ RV (0), then

u(x) ∼ c · αxα−1`(x), as x→∞

For c = 0 the above relations are interpreted as U(x) = o(xα`(x)) and u(x) = o(xα−1`(x)).

3.4 Formalizing the catastrophe principle

In the previous sections, we have mentioned that the catastrophe principle is a quintessen-
tial property of regularly varying distributions. This property states that big sums of
random variables tend to be driven by only one cause. In other words, the distribution of
the maximum is equal to the distribution of the sum, when x→∞. The next two lemmas
3.4.0.1 and 3.4.0.2 formalize these ideas.

3.4 Formalizing the catastrophe principle 25

Lemma 3.4.0.1. Let X and Y be two independent, regularly varying, non-negative ran-
dom variables, with index α > 0. Then X + Y is regularly varying with index α and

P (X + Y > u) ∼ P (X > u) + P (Y > u), as u→∞

The proof can be found in Appendix A.6.

Lemma 3.4.0.2. Let X and Y be two independent, regularly varying, non-negative ran-
dom variables, with index α > 0. Then

P (max(X,Y) > u) ∼ P (X + Y > u), as u→∞

The proof can be found in Appendix A.7.

We can extend the result of lemma 3.4.0.1 via induction on n (see Embrechts et al. (2013),
Section 1.3.1, Corollary 1.3.2)

Corollary 3.4.0.3. Let X,X1, . . . , Xn be iid non-negative regularly varying random vari-
ables with index α > 0 and

Sn = X1 + · · ·+Xn, for n ≥ 1

Then

P (X1 + · · ·+Xn > u) ∼ n P (X > u), as u→∞

Another consequence of lemma 3.4.0.1 is the following (see Mikosch (1999), Section 1.3.1,
Corollary 1.3.8).

Corollary 3.4.0.4. Let X,X1, . . . , Xn be iid non-negative regularly varying random vari-
ables with index α > 0 and ψ1, . . . , ψn be non-negative constants. Then

P (ψ1X1 + · · ·+ ψnXn > u) ∼ P (X > u)(ψα1 + · · ·+ ψαn), as u→∞

These corollaries will be particularly useful in Chapter 4 when we develop an algorithm
to learn the causal order of a linear SEM with regularly varying noise.

26 Heavy-Tailed Distributions

Chapter 4

Method

In this chapter, we present a method to learn the causal order from observational data,
with the assumption that the data is heavy-tailed. In particular, we focus our attention
on the subclass of regularly varying distributions.

4.1 Intuition

We say that X1 causes X2 if we observe the following:

• When X1 takes extreme high values so does X2

• When X2 takes extreme high values, X1 “behaves” normally

Pictorially, we see this happening in figure 4.1.

We can see that whenever X1, on the x-axis, is large (i.e., beyond the red line), then X2

is large too. However, when X2, on the y-axis, is large (i.e., above the green line), then
X1 is not always large. In order to measure the causal effect in the extremes, we define
the coefficient proposed by Engelke et al. (2018),

Definition 4.1.0.1. Let X1 and X2 be two independent, regularly varying, non-negative
random variables, with index α > 0. Let Fi denote the cumulative distribution, for i = 1, 2.
We define the coefficient:

Γ12(q) = E[F2(X2)| F1(X1) > q], where 0 < q < 1

4.2 Properties of Γij

4.2.1 Setup

Before presenting the properties of Γij , we lay down the setup that we will use for the rest
of the chapter.

1. Let X = (X1, ..., Xp) be a random vector that follows a joint distribution P with
density f . Let Fi be the marginal cumulative distribution of Xi, for i = 1, ..., p

27

28 Method

0

2

4

6

8

0 2 4 6

X1

X
2

Figure 4.1: X1 causes X2

2. Let G = (V,E) be a Directed Acyclic Graph (DAG), with V = {1, . . . , p} and
E ⊂ V × V

3. Let (G,P) be a Causal Bayesian Network with related Structural Equation Model
(SEM):

a. Xi ←
∑
j∈pa(i) βijXj + Yi with βis > 0, i, j ∈ V

b. Yi are independent random noise on [0,∞) with regularly varying distribution,
for i ∈ V . Their tails have the form P (Yi > u) ∼ `(u)u−α as u → ∞, where `
is a slowly varying function, and α > 0 is the tail index

4.2.2 Results

Recall that F1 and F2 are regularly varying distributions. Therefore, from lemma 3.4.0.2
it holds,

P (max(Y1, Y2) > u) ∼ P (Y1 + Y2 > u), as u→∞

Under this assumption it makes sense to define for i, j ∈ {1, 2} and i 6= j

pij = lim
u→∞

Fi(u)

Fi(u) + Fj(u)
∈ [0, 1]

The following proposition and proof are taken from Engelke et al. (2018).

Proposition 4.2.2.1. Let Y1 and Y2 be two independent random variables on [0,∞) with
distribution F1 and F2 respectively. Assume further that P (Yi > u) ∼ `(u)u−α as u→∞,
i = 1, 2. Then:

4.2 Properties of Γij 29

lim
u→∞

E[F1(Y1)| Y1 + Y2 > u] = 1− 1

2
p21

Proof. For u > 0 large enough, we have

P (F1(Y1) ≤ x, Y1 + Y2 > u) = P (F1(Y1) ≤ x, Y1 + Y2 > u, Y1 > u)

+ P (F1(Y1) ≤ x, Y1 + Y2 > u, Y2 > u)

− P (F1(Y1) ≤ x, Y1 + Y2 > u, Y1 > u, Y2 > u)

+ P (F1(Y1) ≤ x, Y1 + Y2 > u, Y1 < u, Y2 < u)

(4.2.2.1)

We see that

• P (F1(Y1) ≤ x, Y1 + Y2 > u, Y1 > u)→ 0 as u→∞
• P (F1(Y1) ≤ x, Y1+Y2 > u, Y2 > u) = P (F1(Y1) ≤ x, Y2 > u)P (Y1+Y2 > u| F1(Y1) ≤
x, Y2 > u) = P (F1(Y1) ≤ x, Y2 > u) · 1 = P (F1(Y1) ≤ x)P (Y2 > u) due to indepen-
dence

• P (F1(Y1) ≤ x, Y1 + Y2 > u, Y1 > u, Y2 > u)→ 0 as u→∞
• P (F1(Y1) ≤ x, Y1 + Y2 > u, Y1 < u, Y2 < u) ≤ P (Y1 + Y2 > u, Y1 < u, Y2 < u) =
P (Y1 + Y2 > u)− P (max(Y1, Y2) > u) = o(F1(u) + F2(u)) by lemma 3.4.0.2

Putting everything together and dividing equation (4.2.2.1) by P (Y1 + Y2 > u) ∼ P (Y1 >
u) + P (Y2 > u) we obtain, for 0 ≤ x < 1,

lim
u→∞

P (F1(Y1) ≤ x| Y1 + Y2 > u) = P (F1(Y1) ≤ x) p21

Consequently, the random variable F1(Y1), conditional on the event that {Y1 + Y2 > u},
converges weakly as u→∞ to a random variable with distribution function Bp21U + (1−
Bp21), where U is a uniform distribution on [0, 1] and, independently, Bp21 is Bernoulli
with success probability p2. By weak convergence we conclude

lim
u→∞

E[F1(Y1)| Y1 + Y2 > u] = 1− 1

2
p21

We extend the result above to the case of a linear SEM with p variables.

Proposition 4.2.2.2. Let (G,P) be a causal Bayesian Network with related SEM as shown
in 4.2.1. Let i, j ∈ V . Then it holds:

Γji = lim
u→∞

E[Fi(Xi) | Xj > u] = 1− 1

2
pAB

where

• pAB = limu→∞
P (ZA > u)

P (ZA > u) + P (ZB > u)

30 Method

• ZA := h1(YA), ZB := h2(YB), where h1 and h2 are monotonic increasing linear
functions.1

• A := an(j) ∩ an(i)c

• B := an(j) ∩ an(i)

Proof. In a linear SEM, for monotonic increasing linear functions h, h1, h2, we can write

Xj ← h(Yan(j)) = h1(Yan(j)∩an(i)c) + h2(Yan(j)∩an(i)) = ZA + ZB

where the second equality holds due to linearity. For corollary 3.4.0.4, ZA and ZB are
regularly varying random variables, hence we can write, for u large enough,

P (Fi(Xi) ≤ x,Xj > u) = P (Fi(Xi) ≤ x, ZA + ZB > u) =

= P (Fi(Xi) ≤ x, ZA + ZB > u,ZA > u)

+ P (Fi(Xi) ≤ x, ZA + ZB > u,ZB > u)

− P (Fi(Xi) ≤ x, ZA + ZB > u,ZA > u,ZB > u)

+ P (Fi(Xi) ≤ x, ZA + ZB > u,ZA < u,ZB < u)

(4.2.2.2)

We see that

• P (Fi(Xi) ≤ x, ZA + ZB > u,ZA > u) = P (Fi(Xi) ≤ x, ZA > u)P (ZA + ZB >
u| Fi(Xi) ≤ x, ZA > u) = P (Fi(Xi) ≤ x, ZA > u) · 1 = P (Fi(Xi) ≤ x)P (ZA > u)
since we can write Xi ← g(Yan(i)) which is independent of ZA

• P (Fi(Xi) ≤ x, ZA + ZB > u,ZB > u)→ 0 as u→∞

• P (Fi(Xi) ≤ x, ZA + ZB > u,ZB > u,ZA > u)→ 0 as u→∞

• P (Fi(Xi) ≤ x, ZA + ZB > u,ZB < u,ZA < u) ≤ P (ZA + ZB > u,ZB < u,ZA <
u) = P (ZA + ZB > u) − P (max(ZA, ZB) > u) = o(P (ZA > u) + P (ZB > u)) by
lemma 3.4.0.2

Putting everything together and dividing equation (4.2.2.2) by P (ZA+ZB > u) ∼ P (ZA >
u) + P (ZB > u) we obtain, for 0 ≤ x < 1,

lim
u→∞

P (Fi(Xi) ≤ x| ZA + ZB > u) = P (Fi(Xi) ≤ x)pAB

and thus,

lim
u→∞

E[Fi(Xi) | Xj > u] = 1− 1

2
pAB

1By abuse of notation, we write Z∅ = 0 and P (Z∅ > u) = 0, for u > 0.

4.3 Examples 31

4.3 Examples

In this section, we look at some examples of proposition 4.2.2.2, while we keep all the
assumptions made in 4.2.1.

Example 4.3.0.1. Suppose we have the following SEM, where X1 is independent of X2:

X1 ← Y1

X2 ← Y2

X1 X2

In this case, we see that Γ12 = Γ21 = 1
2 . This follows from the definition of Γ. Indeed,

Γ12 = lim
q→1

E[F2(X2)| F1(X1) > q] = E[F2(X2)] =
1

2

where the second equality holds due to independence, and the third equality holds because
F2(X2) ∼ U [0, 1]. Similarly, we observe that Γ21 = 1

2 .

Example 4.3.0.2. Suppose we have the following SEM, where X1 causes X2:

X1 ← Y1

X2 ← β21X1 + Y2

X1 X2

We want to look at the causal relation between X1 and X2. The ancestors of node 1 are
an(1) = {1}, the ancestors of node 2 are an(2) = {1, 2}.
To compute Γ12, we define:

• A := an(1) ∩ an(2)c = ∅
• B := an(1) ∩ an(2) = {1}
• X1 ← ZA + ZB = h1(YA) + h2(YB) = 0 + Y1

Putting everything together, we obtain:

pAB = lim
u→∞

P (ZA > u)

P (ZA > u) + P (ZB > u)
=

0

0 + P (Y1 > u)
= 0

Γ12 = 1− 1

2
pAB = 1

To compute Γ21, we define:

32 Method

• A := an(2) ∩ an(1)c = {2}
• B := an(2) ∩ an(1) = {1}
• X2 ← ZA + ZB = h1(YA) + h2(YB) = Y2 + β21Y1

Putting everything together, we obtain:

pAB = lim
u→∞

P (ZA > u)

P (ZA > u) + P (ZB > u)

=
`(u)u−α

`(u)u−α(1 + βα21)
=

1

1 + βα21
∈ (0, 1) as β21 > 0

Γ21 = 1− 1

2
pAB < 1

From this example we see that the Γ coefficient is asymmetric, in the sense that if X1

causes X2, then Γ12 = 1 > Γ21.

Example 4.3.0.3. Suppose we have the following linear SEM, where X1 causes both
X2 and X3. In this setup, X2 and X3 have a positive correlation even if none of them
causes the other one. It is the classic case of confounding, where a common (hidden)
variable causes two or more variables. We will show that the Γ coefficient can detect the
confounding phenomenon in this simple setting.

X1 ← Y1

X2 ← β21X1 + Y2

X3 ← β31X1 + Y3

X1X2 X3

We want to look at the causal relationship between X2 and X3, keeping X1 unobserved.
The ancestors of node 2 are an(2) = {2, 1}, the ancestors of node 3 are an(3) = {3, 1}.
To compute Γ23, we define:

• A := an(2) ∩ an(3)c = {2}
• B := an(2) ∩ an(3) = {1}
• X2 ← ZA + ZB = h1(YA) + h2(YB) = Y2 + β21Y1

Putting everything together, we obtain:

pAB = lim
u→∞

P (Y2 > u)

P (Y2 > u) + P (β21Y1 > u)

=
`(u)u−α

`(u)u−α(1 + βα21)
=

1

1 + βα21
∈ (0, 1) as β21 > 0

Γ23 = 1− 1

2
pAB < 1

4.3 Examples 33

To compute Γ32, we define:

• A := an(3) ∩ an(2)c = {3}
• B := an(3) ∩ an(2) = {1}
• X3 ← ZA + ZB = h1(YA) + h2(YB) = Y3 + β31Y1

Hence, we obtain:

pAB =
1

1 + βα31
∈ (0, 1) as β31 > 0

Γ32 = 1− 1

2
pAB < 1

In this case, we see that neither Γ23 nor Γ32 are equal to 1, indicating that X2 and X3 are
not causally related (even if they are correlated).

Example 4.3.0.4. Consider the following DAG, a chain with five nodes. In this case the
SEM writes:

X1 ← Y1

X2 ← β21X1 + Y2

X3 ← β32X2 + Y3

X4 ← β43X3 + Y4

X5 ← β54X4 + Y5

X1 X2 X3 X4 X5

We show two properties of the Γ coefficient. In particular:

i.) If i ∈ an(j) then Γij = 1

ii.) If i ∈ an(j) then Γki ≤ Γkj , for k ∈ V \ {i, j}
Consider case i.). Let i = 1. For j = 2, . . . , 5, we have:

• A := an(1) ∩ an(j)c = ∅
• B := an(1) ∩ an(j) = an(1) = {1}
• X1 ← ZA + ZB = 0 + Y1

Then, it follows that pAB = 0, and so Γ1j = 1, for j = 2, . . . , 5.

Consider case ii.). We start with a trivial case, where k = 1, i = 2, j = 3. In this case,
from case i.), we have that Γ12 = Γ13 = 1. Therefore case ii.) holds, too.
Now, let i = 1, j = 2, k = 3. We want to compare Γ31 with Γ32. For Γ31 we define:

• A := an(3) ∩ an(1)c = {2, 3}
• B := an(3) ∩ an(1) = {1}

34 Method

• X3 ← ZA + ZB = (Y3 + β32Y2) + (β32β21Y1)

Then, it follows:

pAB =
1 + βα32

1 + βα32 + (β32β21)α

For Γ32 we define:

• A := an(3) ∩ an(2)c = {3}

• B := an(3) ∩ an(2) = {1, 2}

• X3 ← ZA + ZB = (Y3) + (β32Y2 + β32β21Y1)

Then, it follows:

p∗AB =
1

1 + βα32 + (β32β21)α

We can see that pAB ≥ p∗AB and thus, Γ31 ≤ Γ32.

We can generalize case i.) and ii.) in the following lemma.

Lemma 4.3.0.5. Let (G, P) be a causal Bayesian Network with related SEM as shown in
4.2.1. Let i, j, k ∈ V with i ∈ an(j). Then, the following holds:

i.) Γij = 1

ii.) Γki ≤ Γkj

Proof. i.) Since i is ancestor of j, it holds that an(i) ⊂ an(j). This implies that the
intersection between an(i) and an(j)c is empty. If we define:

• A := an(i) ∩ an(j)c = ∅

• B := an(i) ∩ an(j) = an(i)

we observe that pAB = 0 and thus Γij = 1.

ii.) Since i ∈ an(j) it holds that an(i) ⊂ an(j). Equivalently, we can write an(i)c ⊃ an(j)c.
Hence it follows that

A := an(k) ∩ an(i)c ⊃ an(k) ∩ an(j)c =: A∗

B := an(k) ∩ an(i) ⊂ an(k) ∩ an(j) := B∗

Therefore,

4.4 Structure Learning 35

Γki = 1− 1

2
pAB = 1− 1

2
lim
u→∞

P (ZA > u)

P (Zan(k) > u)
= 1− 1

2
lim
u→∞

P (ZA∗ > u) + P (ZA\A∗ > u)

P (Zan(k) > u)

≤ 1− 1

2
lim
u→∞

P (ZA∗ > u)

P (Zan(k) > u)
= 1− 1

2
pA∗B∗ = Γkj

where the third equality holds because ZA is a linear combination of regular varying
random variables, with positive coefficients, and hence corollary 3.4.0.4 applies.

4.4 Structure Learning

We want to find an algorithm to discover the topological order of a causal graph, given a
set of observations generated by an SEM, as described in 4.2.1. First, we recall the main
facts that we discovered in the previous section. Namely, given a causal Bayesian network
(G,P), if the node i has no parents (also called root node) we have

Γij =

{
1, if j ∈ desc(i)
1
2 , if j /∈ desc(i)

Γji =

{
[12 , 1), if j ∈ desc(i)
1
2 , if j /∈ desc(i)

From this facts, we see that if i is a root node, the quantity ∆ij := Γij − Γji ≥ 0 for
j ∈ V \ {i}. Intuitively, we can expect that a source node i (not necessarily unique),
maximizes the quantity Si =

∑
j 6=i ∆ij , in the population case. The following lemma

establishes this result and gives us a tool to detect a root node from a set of observed
variables.

Lemma 4.4.0.1. Let (G,P) be a Bayesian Network with related SEM, as defined in 4.2.1.
Suppose that P satisfies the global Markov property and that there are no hidden con-
founders in the SEM. Define

Si :=
∑
j 6=i

∆ij , ∀i, j ∈ V

where ∆ij := Γij − Γji. Let k ∈ V . If k ∈ arg max
i
Si, then k is a root node.

Proof. Suppose k ∈ arg max
i
Si and that k is not a root node. This means that {k} ⊂ an(k).

Since G is a DAG, there exists a node m ∈ an(k) such that pa(m) = ∅. Since m ∈ an(k),
it holds that desc(k) ⊂ desc(m). Hence, we can write desc(m) := {m} ∪ desc(k) ∪ A for
some (possibly empty) set A. Define N := non-desc(m). Since m is d-separated from all
nodes j ∈ N , using the Markov assumption, we know that Xm ⊥⊥ XN . In other words,
Γmj = Γjm = 1

2 for j ∈ N . At the same time, it holds that Γkj − Γjk = 0 for the nodes
j ∈ N that are d-separated from k, and Γkj − Γjk < 0 for the nodes j ∈ N that are
ancestors of k. It follows that

∑
j∈N (Γkj − Γjk) ≤ 0.

36 Method

Let us decompose V = desc(m) ∪ non-desc(m) := {m} ∪ desc(k) ∪A ∪N . Thus,

Sk =
∑
j 6=k

∆kj =
∑
j 6=k

(Γkj − Γjk)

=
∑

j∈desc(m)\{k}
(Γkj − Γjk) +

∑
j∈non-desc(m)

(Γkj − Γjk)

= (Γkm − Γmk) +
∑

j∈desc(k)\{k}
(Γkj − Γjk) +

∑
j∈A

(Γkj − Γjk) +
∑
j∈N

(Γkj − Γjk)

≤ (Γkm − Γmk) +
∑

j∈desc(k)\{k}
(1− Γjk) +

∑
j∈A

(Γkj − Γjk)

< (Γmk − Γkm) +
∑

j∈desc(k)\{k}
(1− Γjm) +

∑
j∈A

(1− Γjm)

=
∑
j 6=m

∆mj = Sm

where the inequality holds because Γmk = 1 > Γkm and Γjm ≤ Γjk for j ∈ V \ {m, k},
according to lemma 4.3.0.5.

But this is a contradiction, since we assumed that k ∈ arg max
i
Si.

The result of lemma 4.4.0.1 tells us that, given a set of variables satisfying the assumptions
4.2.1, it is possible to identify one variable with no parents, when n→∞. Intuitively, we
could identify one variable as the root node, remove its effect from the remaining ones,
and repeat the procedure until no variables are left. In this way, we would be able to
construct a topological order for the set of variables. Hence, this procedure would involve
two steps:

1. Identify the root node
2. Remove impact of root node from the remaining nodes

Regarding point 1., we define first an estimator for Γ, as proposed by Engelke et al. (2018),

Definition 4.4.0.2 (A non-parametric estimator). Let X1 and X2 be two heavy-tailed ran-
dom variables. Let (Xi1, Xi2) be an independent observation of (X1, X2) for i = 1, . . . , n.
Let Rnij be the rank of Xij among the X1j , . . . , Xnj for j = 1, 2. Replacing F1 and F2 in
definition 4.1.0.1 by the empirical counterparts, and the threshold u by un = 1 − c/n for
some integer 1 ≤ c ≤ n, we obtain

Γ̂12(un) =
1

c

n∑
i=1

Ri2
n+ 1

1{Ri1 > n+ 1/2− c}

For this estimator to be consistent, a classical assumption in extreme value theory is that
c = cn depends on the sample size n such that cn →∞ and cn/n→ 0 as n→∞. In our
case, we choose cn =

√
n/2. The estimator Γ̂21(un) is defined analogously.

Using the estimated coefficients Γ̂ij , we can identify a root node by computing k =
arg max

i
Ŝi = arg max

i

∑
j 6=i ∆̂ij , for i, j ∈ V . Once we have such maximizer, we want

to remove its effect from the other variables to be able to use result of lemma 4.4.0.1

4.4 Structure Learning 37

βkC βjC

XC

Xk Xj

Figure 4.2: Causal Bayesian Network with a confounder XC

recursively. We present here 4 competing algorithms that are based, to some extent, on
points 1. and 2. above. We name the algorithms Drop, Regress, Remove and Fast. All four
algorithms have in common the first step, namely finding the root node. To do that, we
estimate the matrix Γ̂ from a dataset, we compute the scores Ŝi =

∑
j 6=i ∆̂ij , for all i ∈ V ,

and choose the variable k = arg max
i
Ŝi. The four algorithms differ regarding the second

point, i.e., how to remove the effect of the root nodes. Fast algorithm does not remove any
node from the dataset. It computes Ŝi, for all i ∈ V , and builds the topological order by
ranking the variables by Ŝi, in decreasing order. Remove algorithm iteratively removes
the root nodes from the dataset, which is equivalent to recompute at each iteration Ŝi
considering only the remaining variables in the graph. Regress algorithm regresses out
the impact of the root node from the other variables.2 For example, suppose we have p
variables X1, . . . , Xp, and we have identified Xk as the source node. We can transform the
remaining variables in the following way:

X̃i ← Xi − β̂ikXk, i ∈ V \ {k}

where β̂ik is the ordinary least squares (OLS) estimated coefficient of the total effect of
Xk on Xi. This method has two shortcomings. First, it applies only to linear SEMs.
This problem, however, is easily solved if we implement non-linear regression techniques
(e.g., Generalized Additive Model). The second issue, which is more problematic, arises
in the case of a confounder. Consider, for example, the Causal Bayesian Network shown
in 4.2 where the variable XC is hidden. In this case, we see that the direct effect of Xk

on Xj is zero since Xk does not cause Xj . However, the OLS estimated coefficient for

Xj = β̂jkXk + ε̂j is biased and in particular E[β̂jk] ∝ βkC · βjC 6= 0.

To avoid this issue, we propose the algorithm named Drop. The idea behind the algorithm
relies on the definition of the estimator for Γ, 4.4.0.2. In particular, we note that Γ̂ depends
only on the cn greatest observations, where cn =

√
n/2. Assuming that Xk causes its

descendant through extremes observations, by removing the cn-greatest observations from
the data set, we should be able to filter out the effect of the root node from the other
variables. Using an example, suppose that we identify Xk as a source node. Let n be
the number of observations and cn =

√
n/2 the order statistic. Denote the cthn -greatest

observation of Xk as Xcn,k. We remove from the dataset the variable Xk and all the rows
where Xk ≥ Xcn,k.

2We credit the idea of regressing out the impact of the root node to Shimizu et al. (2011).

38 Method

Below, we present the pseudocode of the four algorithms.

Algorithm 1 Drop

1: function Drop Algorithm(X)
2: . Input: data set X ∈ Rn×p
3: . Output: vector representing a topological order π = [π(1), . . . , π(p)]
4: V ← [1, . . . , p]
5: X0 ← X
6: V0 ← V
7: π ← []
8: for iter ∈ {1, . . . , p− 1} do
9: . find root node

10: Γij ← compute gamma(X0[, i], X0[, j]) for i, j ∈ V0, i 6= j
11: ∆ij ← Γij − Γji
12: Si ←

∑
j 6=i ∆ij for i ∈ V0

13: root← arg max
i
Si

14: . remove impact of the root node
15: X0 ← remove extreme observations(X0)
16: X0 ← remove root variable(X0)
17: V0 ← remove root node(V0)
18: π ← update topological order(π, root)
19: end for
20: root← V0[1]
21: π ← update topological order(π, root)
22: return π
23: end function

4.4 Structure Learning 39

Algorithm 2 Regress

1: function Regress Algorithm(X)
2: . Input: data set X ∈ Rn×p
3: . Output: vector representing a topological order π = [π(1), . . . , π(p)]
4: V ← [1, . . . , p]
5: X0 ← X
6: V0 ← V
7: π ← []
8: for iter ∈ {1, . . . , p− 1} do
9: . find root node

10: Γij ← compute gamma(X0[, i], X0[, j]) for i, j ∈ V0, i 6= j
11: ∆ij ← Γij − Γji
12: Si ←

∑
j 6=i ∆ij for i ∈ V0

13: root← arg max
i
Si

14: . remove impact of the root node
15: X0 ← regress out all variables vs root(X0)
16: X0 ← remove root variable(X0)
17: V0 ← remove root node(V0)
18: π ← update topological order(π, root)
19: end for
20: root← V0[1]
21: π ← update topological order(π, root)
22: return π
23: end function

Algorithm 3 Remove

1: function Remove Algorithm(X)
2: . Input: data set X ∈ Rn×p
3: . Output: vector representing a topological order π = [π(1), . . . , π(p)]
4: V ← [1, . . . , p]
5: X0 ← X
6: V0 ← V
7: π ← []
8: for iter ∈ {1, . . . , p− 1} do
9: . find root node

10: Γij ← compute gamma(X0[, i], X0[, j]) for i, j ∈ V0, i 6= j
11: ∆ij ← Γij − Γji
12: Si ←

∑
j 6=i ∆ij for i ∈ V0

13: root← arg max
i
Si

14: . remove impact of the root node
15: X0 ← remove root variable(X0)
16: V0 ← remove root node(V0)
17: π ← update topological order(π, root)
18: end for
19: root← V0[1]
20: π ← update topological order(π, root)
21: return π
22: end function

40 Method

Algorithm 4 Fast

1: function Fast Algorithm(X)
2: . Input: data set X ∈ Rn×p
3: . Output: vector representing a topological order π = [π(1), . . . , π(p)]
4: V ← [1, . . . , p]
5: . compute scores Si
6: Γij ← compute gamma(X[, i], X[, j]) for i, j ∈ V , i 6= j
7: ∆ij ← Γij − Γji
8: Si ←

∑
j 6=i ∆ij for i ∈ V

9: S ← [S1, . . . , Sp]
10: . compute topological order based on S
11: S̃ ← sort in decreasing order(S)
12: π ← extract indices(S̃)
13: return π
14: end function

Chapter 5

Simulations

In this chapter, we present some simulations to assess the performance of the four algo-
rithms introduced in Chapter 4.

5.1 Learning a Topological Order

The goal is to estimate a topological order from a heavy-tailed dataset (in particular with
regularly varying tails). We test the algorithms on different linear SEMs, assuming t-
Student distributed noise and a grid of three parameters: sample size n, tail-index α and
the average magnitude of the SEM coefficients b. For each combination (n, α, b) we assess
the performance of the four methods (i.e., Drop, Regress, Remove and Fast algorithm)
over 200 simulations. We define two metrics to measure the performance,

• Q-performance
• Topological matrix

5.1.1 Q-performance

Suppose we have a Causal Bayesian Network with graph G = (V,E), where V ∈ {1, . . . , p}
and E ⊂ V × V . Let ΠG =

{
(π(1), . . . , π(p)) : i ∈ V, i ∈ an(j) =⇒ π(i) < π(j)

}
be the collection of valid topological orders of G. Given an estimated topological order
π̂ = [π̂(1), . . . , π̂(p)] we can verify whether π̂ belongs to the “true” collection ΠG. If we
run m-simulations on a fixed combination of (n, α, b), we obtain π̂1, . . . , π̂m. We define:

Q =
1

m

m∑
i=1

1[π̂i ∈ ΠG]

as the proportion of correctly estimated topological sorts.

5.1.2 Topological matrix

Consider a Causal Bayesian Network with graph G = (V,E), where V ∈ {1, . . . , p} and
E ∈ V × V . We define the true topological matrix M ∈ {0, 1}p×p such that

41

42 Simulations

Mij =

{
1, if ∃π ∈ ΠG s.t. π(i) < π(j)
0, else

for i, j ∈ V . Similarly, we can estimate a topological matrix from a dataset in the following
way:

1. Estimate a topological order π̂ = [π̂(1), . . . , π̂(p)]
2. Define M̂ ∈ {0, 1}p×p, where,

M̂ij =

{
1, if π̂(i) < π̂(j)
0, else

for i, j ∈ V . Over m-simulations, we can compute an “average” topological matrix M ij =
1
m

∑m
`=1 M̂

`
ij , for i, j ∈ V . Each entry M ij tells how many times (in percentage) variable

Xi comes before variable Xj in the estimated topological sorts. Comparing M with M is
a useful visualization aid to assess the strengths and weaknesses of the algorithms.

In the following, we present the results for different simulations. For each linear SEM, we
consider a grid of three parameters. The parameters are:

• sample size: n ∈ {100, 1000, 10000}
• tail-index: α ∈ {1, . . . , 5}
• average magnitude of SEM coefficients: b ∈ {0.5, 1, 1.5}, where β′s ∼ U [0, 2b]

We assume that the noise is distributed as a t-Student, where the degrees of freedom
correspond to the tail-index α. For each combination of (n, α, b) we simulate 200 datasets,
and we compare the Q-performance of the four algorithms. Besides, we compare the “true”
topological matrix M with the estimated one M for some configurations of (n, α, b).

5.1.3 Simulation 1 - Simple chain

Consider the Causal Bayesian Network depicted in figure 5.1. We assume a linear SEM
with related DAG G = (V,E), where V = {1, . . . , 5} and E = {(1, 2), (2, 3), (3, 4), (4, 5)}.

β21 β32 β43 β54

X1 X2 X3 X4 X5

Figure 5.1: Causal Bayesian Network - Simple chain

Each entry in tables 5.1, 5.2, 5.3, 5.4 represent the Q-performance over 200 simulations
for a particular algorithm and parameter configuration (n, α, b). A score of zero means
that all estimated causal orders are wrong. A score of one means that all estimated causal
orders are correct. To give a benchmark performance, note that for this graph there is
only one valid topological order, that is π = (1, 2, 3, 4, 5). At the same time, since the
graph has five nodes, there are 5! = 120 possible ways to sort the vertices. Hence, on
average, a random algorithm would guess the correct order one out of 120 times.

Looking at tables 5.1, 5.2, 5.3, 5.4, we can observe that all the four methods perform
in a similar way when the sample size is large (n = 10, 000), and the tails of the noise
distribution are heavy (α ≈ 1, 2). For smaller values of n and higher values of α, Fast

5.1 Learning a Topological Order 43

method is the one that performs worst in most cases. Consider figure 5.5, with the true
topological matrix and the estimated ones, for n = 1, 000, α = 1, b = 1. Recall that the
entries (i, j) of the estimated matrices count how many times (in percentage) π̂(i) < π̂(j)
over 200 simulations, where i, j ∈ V . For example, in Drop and Remove algorithm π̂(5) <
π̂(4) only 4% of the times. On the other hand, Fast algorithm makes more mistakes
since π̂(5) < π̂(4) in 12% of the simulations. It seems that Fast algorithm tends to make
mistakes for the variables that come “late” in the correct topological order (in this case X4

and X5). To understand why this happens, recall that Fast method does not remove the
causal impact of the ancestors from its descendants. More precisely, one can show that:

• Γ45 = 1, since X4 causes X5 ← β54X4 + Y5
• Γ54 ≈ 1 (by using proposition 4.2.2.2)

Hence, both coefficients are very similar Γ45 ≈ Γ54 and it is difficult for Fast method to
detect the causal order between X4 and X5. In contrast, the other three methods (Drop,
Regress and Remove) iteratively remove the impact of the root nodes from the other
vertices. This allows estimating more precisely the causal order of the variables that come
“late” with respect to π. For example, if we remove the causal effect of X1, X2, X3 from
X4 and X5, we obtain X̃4 ← Y4 and X̃5 ← β54X̃4 + Y5. Using proposition 4.2.2.2 on the
transformed variables X̃4 and X̃5 we obtain Γ45 = 1 > Γ54 = 1− 1

2
1

1+βα54
. Therefore, it is

easier to identify the causal direction between nodes 4 and 5.

5.1.4 Simulation 2 - Polytree

Consider the Causal Bayesian Network shown in figure 5.2. We assume a linear SEM with
DAG G = (V,E), where V = {1, . . . , 6} and E = {(1, 3), (2, 3), (2, 4), (3, 5), (5, 6)}.

β42β32β31

β53

β65

X2

X4X3

X1

X5

X6

Figure 5.2: Causal Bayesian Network - Polytree

Tables 5.5, 5.6, 5.7, 5.8 show the Q-performance of the four algorithms. In this case, a
random algorithm would guess the correct order one time out of 80 trials, on average. In
fact, there are nine valid topological orders for the graph and 6! = 720 ways to permute
six nodes. As it happens in Simulation 1, the four algorithms perform almost identically
for large sample sizes (n = 10, 000) and heavy-tailed noise (α ≈ 1). In the other cases, the
algorithms Drop, Regress and Remove outperform Fast method.

Looking at a specific set of parameters, n = 10000, α = 5 and b = 2, we observe again
that Fast algorithm tends to make more mistakes for the variables that come “late” in
the true causal order. As we can see in matrix 5.6, Fast algorithm incorrectly estimates
π̂(6) < π̂(5) 40% of the times, π̂(6) < π̂(3) 23% of the times and π̂(5) < π̂(3) 30% of the

44 Simulations

times. In comparison, the error rates for the other algorithms are 11% for π̂(6) < π̂(5),
4% for π̂(6) < π̂(3) and 9% for π̂(5) < π̂(3), approximately.

5.1.5 Simulation 3 - Non-Polytree

Consider a slightly more complex Causal Bayesian Network, depicted in figure 5.3. There
are five valid causal orders out of 720 possible permutations of the nodes. A random
algorithm, on average, would guess the correct order less than seven times out of 1000
trials.

β42β32β31

β54

β53

β65

X2

X4X3

X1

X5

X6

Figure 5.3: Causal Bayesian Network - Non-Polytree

As already shown in the previous simulations, Fast algorithm’s Q-performance is lower
compared to the other methods especially when n = 1, 000 and α ≈ 4, 5 (see tables 5.9,
5.10, 5.11, 5.12). Looking at the topological matrices 5.7, we note that Drop, Regress
and Remove algorithm perform almost equally, for n = 1000, α = 1 and b = 3. As be-
fore, Fast algorithm has a higher error rate for variables X3, X5, X6 compared to the
other algorithms. However, it is interesting to note that for some pairs of variables
((X5, X1), (X6, X1), (X6, X4)) it makes no mistakes, while Drop, Regress and Remove al-
gorithm do.

5.1.6 Simulation 4 - Graph with confounders

In this last simulation, we make a step further and test the four algorithms on a Causal
Bayesian Network with two confounders (figure 5.4).

β1C1
β2C1

β21

β31 β32

β3C2

β4C2

β43

C1

X1 X2

X3

C2

X4

Figure 5.4: Causal Bayesian Network - Graph with confounders

5.2 Some comments 45

Even if lemma 4.4.0.1 does not cover the case of confounding variables, we think it is useful
to study empirically how the methods perform in this setting. In this case, there is only one
valid topological sort, π = (1, 2, 3, 4), and 24 possible permutations of the four observed
variables. Thus, a random algorithm would make a correct guess, on average, less than 5%
of the times. Even in the presence of confounding variables, when n = 10, 000 and α ≈ 1, 2,
all algorithms guess the correct topological order in around 90% of the simulations (see
tables 5.13, 5.14, 5.15, 5.16). If we keep the sample size large (n = 10, 000) and make the
tails lighter (α = 5), we see from the topological matrices 5.8 that there is a slight loss in
performance, especially for Fast algorithm. The results in this setting are a good starting
point. In fact, they suggest that lemma 4.4.0.1 might also hold in the case of confounding
variables.

5.2 Some comments

In the previous simulations, we have observed that for large sample size (n = 10, 000) and
heavy-tailed noise (α ≈ 1, 2) the four methods are similar concerning their Q-performance
and topological matrices. However, when we depart from this ideal setup (i.e., when n
is smaller and α ≈ 4, 5), Drop, Regress and Remove algorithm are preferable than Fast
algorithm. Also, we have studied the impact of the parameters n, α, b. In particular:

1. The sample size n seems to be crucial for the performance of the algorithms. For
example, if we look at table
reftab:chain5Drop, when α = 1, the performance improves from 30% (n = 100) to
95% (n = 10000) roughly. Similar behaviour happens across the board for all algo-
rithms and simulations. Therefore, we conclude that the results proven in Chapter
refmethod tend to hold mainly in the population case (i.e., when n→∞).

2. The tail-index α (in our case the degrees of freedom) also plays an important role.
As we depart from the heavy-tailed assumption, the algorithms start to ”break”.
This should be no surprise, however. Indeed, the four algorithms are built upon the
Γ coefficient, which relies on the heavy-tailed distribution of the noise (see definition
refdef:def-gamma).

3. It is not clear the effect of b. Recall that b determines the average size of the β
coefficients in the SEM. Looking at tables with the Q-performance it seems that
there is an interaction between the parameters α and b. We conjecture that it is
not b alone, rather the ration b/α to impact the algorithms’ performance. If we
consider a linear SEM, each equation is made of two parts: signal and noise. The
parameter b regulates the signal, whereas the parameter α regulates the noise. From
the simulations, it seems that the algorithms fail when the signal is high (b ≈ 1.5)
compared to the noise (α ≈ 5). This phenomenon is in line with the theoretical
results of Chapter
refmethod. Consider, for example, the following SEM:

X1 ← Y1

X2 ← βX1︸︷︷︸
signal

+ Y1︸︷︷︸
noise

46 Simulations

where P (Yi > u) ∼ `(u)u−α as u→∞, i = 1, 2. Since X1 causes X2, then Γ12 = 1.
On the other hand, one can show that Γ21 = 1− 1

2
1

1+βα . If we take β large enough
(i.e., b is large) then the signal dominates the noise and Γ21 ≈ 1. Therefore, Γ12 ≈ Γ21

and we cannot detect anymore the causal order between the variables.

Table 5.1: Simple chain. Q-performance for Drop algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.220 0.145 0.065 0.070 0.035
b = 1 0.365 0.185 0.115 0.075 0.060
b = 1.5 0.400 0.220 0.105 0.115 0.090

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.805 0.505 0.405 0.335 0.300
b = 1 0.905 0.700 0.485 0.435 0.315
b = 1.5 0.910 0.625 0.395 0.310 0.190

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.945 0.805 0.710 0.63 0.595
b = 1 0.965 0.910 0.850 0.75 0.720
b = 1.5 0.995 0.880 0.685 0.60 0.465

Table 5.2: Simple chain. Q-performance for Regress algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.210 0.100 0.07 0.06 0.055
b = 1 0.345 0.165 0.18 0.09 0.060
b = 1.5 0.485 0.285 0.16 0.13 0.115

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.805 0.635 0.445 0.390 0.255
b = 1 0.905 0.715 0.630 0.475 0.350
b = 1.5 0.945 0.760 0.655 0.460 0.390

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.935 0.740 0.680 0.67 0.580
b = 1 0.985 0.945 0.855 0.78 0.765
b = 1.5 0.985 0.935 0.900 0.84 0.755

5.2 Some comments 47

Table 5.3: Simple chain. Q-performance for Remove algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.270 0.175 0.115 0.055 0.065
b = 1 0.405 0.215 0.125 0.085 0.100
b = 1.5 0.475 0.345 0.215 0.210 0.150

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.775 0.535 0.455 0.395 0.295
b = 1 0.895 0.745 0.470 0.395 0.295
b = 1.5 0.860 0.575 0.410 0.285 0.260

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.96 0.805 0.73 0.605 0.645
b = 1 0.94 0.910 0.82 0.795 0.640
b = 1.5 0.99 0.770 0.67 0.505 0.445

Table 5.4: Simple chain. Q-performance for Fast algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.165 0.075 0.070 0.035 0.055
b = 1 0.185 0.085 0.110 0.050 0.055
b = 1.5 0.195 0.130 0.115 0.135 0.115

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.655 0.415 0.210 0.180 0.120
b = 1 0.745 0.510 0.305 0.240 0.205
b = 1.5 0.630 0.330 0.255 0.225 0.125

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.91 0.575 0.495 0.45 0.375
b = 1 0.97 0.830 0.615 0.54 0.410
b = 1.5 0.92 0.625 0.395 0.31 0.305

48 Simulations

1

1

1

1

1

1

1

1

1

1

X5

X4

X3

X2

X1

X1 X2 X3 X4 X5
True

0.02

0.02

0.04

0.06

0.02

0.94

0.01

0.98

0.96

0.02

0.99

1

0.98

0.98

1

1

0.98

X5

X4

X3

X2

X1

X1 X2 X3 X4 X5
Drop

0.04

0.05

0.06

0.06

0.01

0.02

0.02

0.94

0.01

0.98

0.94

0.99

0.98

0.95

1

1

0.99

0.96

X5

X4

X3

X2

X1

X1 X2 X3 X4 X5
Regress

0.02

0.02

0.02

0.05

0.98

0.02

0.95

0.98

0.02

0.98

0.98

1

0.98

1

1

1

X5

X4

X3

X2

X1

X1 X2 X3 X4 X5
Remove

0.01

0.04

0.01

0.01

0.03

0.96

0.04

0.09

0.97

0.99

0.12

0.91

0.99

1

0.88

0.96

0.99

1

X5

X4

X3

X2

X1

X1 X2 X3 X4 X5
Fast

Figure 5.5: Simple chain. Topological matrices for n = 1000, α = 1, b = 2

5.2 Some comments 49

Table 5.5: Polytree. Q-performance for Drop algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.285 0.115 0.115 0.090 0.05
b = 1 0.320 0.165 0.090 0.045 0.05
b = 1.5 0.355 0.150 0.125 0.105 0.05

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.825 0.63 0.53 0.335 0.22
b = 1 0.920 0.66 0.47 0.315 0.22
b = 1.5 0.865 0.56 0.34 0.225 0.16

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.960 0.845 0.825 0.750 0.600
b = 1 0.995 0.920 0.745 0.675 0.600
b = 1.5 0.980 0.815 0.685 0.475 0.325

Table 5.6: Polytree. Q-performance for Regress algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.245 0.155 0.05 0.085 0.060
b = 1 0.390 0.220 0.16 0.105 0.070
b = 1.5 0.370 0.235 0.16 0.115 0.075

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.875 0.67 0.575 0.410 0.385
b = 1 0.930 0.75 0.615 0.415 0.370
b = 1.5 0.925 0.73 0.585 0.405 0.295

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.98 0.88 0.82 0.755 0.665
b = 1 0.99 0.92 0.88 0.855 0.755
b = 1.5 1.00 0.97 0.80 0.700 0.585

50 Simulations

Table 5.7: Polytree. Q-performance for Remove algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.300 0.190 0.065 0.065 0.035
b = 1 0.405 0.225 0.085 0.105 0.060
b = 1.5 0.445 0.230 0.105 0.100 0.085

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.855 0.630 0.495 0.345 0.295
b = 1 0.870 0.700 0.440 0.330 0.280
b = 1.5 0.850 0.655 0.365 0.280 0.255

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.975 0.835 0.705 0.690 0.695
b = 1 0.955 0.910 0.800 0.715 0.645
b = 1.5 0.970 0.835 0.540 0.500 0.375

Table 5.8: Polytree. Q-performance for Fast algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.235 0.100 0.065 0.09 0.040
b = 1 0.195 0.095 0.080 0.06 0.055
b = 1.5 0.200 0.065 0.040 0.03 0.080

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.78 0.47 0.330 0.305 0.225
b = 1 0.76 0.49 0.295 0.250 0.215
b = 1.5 0.63 0.35 0.215 0.170 0.150

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.935 0.730 0.685 0.560 0.465
b = 1 0.985 0.845 0.665 0.470 0.325
b = 1.5 0.940 0.675 0.460 0.265 0.215

5.2 Some comments 51

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
True

0.02

0.02

0.06

0.38

0.05

0.38

0.5

0.66

0.84

0.95

0.02

0.06

0.1

0.16

0.62

0.04

0.08

0.9

0.34

0.94

0.18

0.92

0.94

0.5

0.98

0.82

0.96

0.98

0.62

0.98

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Drop

0.02

0.02

0.04

0.41

0.06

0.34

0.57

0.74

0.88

0.94

0.06

0.08

0.08

0.12

0.59

0.04

0.08

0.92

0.26

0.96

0.04

0.92

0.92

0.42

0.98

0.96

0.96

0.94

0.66

0.98

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Regress

0.01

0.02

0.02

0.36

0.08

0.28

0.39

0.48

0.72

0.92

0.02

0.05

0.1

0.28

0.64

0.03

0.1

0.9

0.52

0.98

0.12

0.9

0.95

0.61

0.98

0.88

0.97

0.98

0.72

0.99

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Remove

0.03

0.37

0.05

0.22

0.28

0.41

0.82

0.95

0.02

0.03

0.06

0.18

0.63

0.23

0.3

0.94

0.59

0.97

0.4

0.7

0.97

0.72

1

0.6

0.77

0.98

0.78

1

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Fast

Figure 5.6: Polytree. Topological matrices for n = 10000, α = 5, b = 2

52 Simulations

Table 5.9: Non-Polytree. Q-performance for Drop algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.185 0.105 0.090 0.080 0.025
b = 1 0.260 0.120 0.085 0.040 0.030
b = 1.5 0.240 0.170 0.075 0.065 0.030

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.815 0.565 0.380 0.320 0.230
b = 1 0.855 0.540 0.295 0.225 0.155
b = 1.5 0.740 0.350 0.245 0.140 0.075

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.965 0.80 0.75 0.70 0.585
b = 1 0.965 0.85 0.68 0.54 0.415
b = 1.5 0.990 0.64 0.42 0.24 0.145

Table 5.10: Non-Polytree. Q-performance for Regress algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.300 0.140 0.085 0.065 0.075
b = 1 0.385 0.250 0.180 0.095 0.095
b = 1.5 0.460 0.195 0.150 0.110 0.050

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.840 0.66 0.515 0.415 0.365
b = 1 0.915 0.76 0.675 0.550 0.415
b = 1.5 0.915 0.75 0.550 0.480 0.280

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.99 0.820 0.775 0.735 0.720
b = 1 0.99 0.970 0.875 0.845 0.800
b = 1.5 0.99 0.965 0.880 0.780 0.705

5.2 Some comments 53

Table 5.11: Non-Polytree. Q-performance for Remove algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.300 0.10 0.06 0.040 0.055
b = 1 0.325 0.19 0.10 0.045 0.030
b = 1.5 0.450 0.19 0.11 0.080 0.090

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.84 0.625 0.440 0.360 0.255
b = 1 0.88 0.650 0.420 0.315 0.195
b = 1.5 0.81 0.570 0.325 0.185 0.240

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.975 0.825 0.745 0.690 0.665
b = 1 0.975 0.840 0.740 0.585 0.460
b = 1.5 0.980 0.805 0.460 0.395 0.290

Table 5.12: Non-Polytree. Q-performance for Fast algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.195 0.055 0.05 0.015 0.030
b = 1 0.205 0.080 0.05 0.025 0.010
b = 1.5 0.215 0.060 0.04 0.020 0.025

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.76 0.555 0.365 0.230 0.105
b = 1 0.71 0.465 0.235 0.160 0.125
b = 1.5 0.49 0.305 0.165 0.155 0.085

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.955 0.805 0.700 0.550 0.525
b = 1 0.965 0.735 0.505 0.325 0.275
b = 1.5 0.885 0.510 0.270 0.270 0.135

54 Simulations

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
True

0.02

0.4

0.02

0.03

0.08

0.42

0.72

0.98

0.02

0.04

0.05

0.28

0.6

0.01

0.06

0.95

0.58

0.98

0.05

0.94

0.96

0.92

1

0.95

0.99

0.98

0.97

1

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Drop

0.42

0.01

0.01

0.02

0.36

0.74

0.99

0.02

0.04

0.04

0.26

0.57

0.01

0.96

0.64

1

0.01

0.99

0.96

0.98

1

0.99

1

0.98

0.99

1

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Regress

0.43

0.04

0.02

0.03

0.28

0.74

0.96

0.01

0.01

0.02

0.26

0.57

0.03

0.06

0.98

0.72

1

0.07

0.94

0.99

0.97

1

0.93

0.97

0.99

0.98

1

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Remove

0.4

0.02

0.14

0.86

1

0.03

0.14

0.6

0.07

0.1

0.97

0.86

1

0.39

0.9

1

0.98

1

0.61

0.93

1

1

1

X6

X5

X3

X1

X4

X2

X2 X4 X1 X3 X5 X6
Fast

Figure 5.7: Non-Polytree. Topological matrices for n = 1000, α = 1, b = 3

5.2 Some comments 55

Table 5.13: Graph with confounders. Q-performance for Drop algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.490 0.250 0.17 0.120 0.130
b = 1 0.475 0.240 0.19 0.185 0.135
b = 1.5 0.480 0.345 0.22 0.280 0.190

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.890 0.750 0.605 0.50 0.335
b = 1 0.900 0.680 0.465 0.33 0.290
b = 1.5 0.805 0.505 0.345 0.22 0.215

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.990 0.920 0.88 0.830 0.715
b = 1 0.995 0.895 0.73 0.535 0.495
b = 1.5 0.980 0.805 0.51 0.420 0.315

Table 5.14: Graph with confounders. Q-performance for Regress algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.480 0.28 0.18 0.155 0.130
b = 1 0.465 0.28 0.23 0.180 0.120
b = 1.5 0.505 0.29 0.27 0.155 0.125

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.895 0.800 0.595 0.500 0.420
b = 1 0.910 0.700 0.465 0.340 0.265
b = 1.5 0.835 0.535 0.310 0.275 0.205

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.985 0.925 0.860 0.840 0.715
b = 1 0.990 0.900 0.735 0.615 0.455
b = 1.5 0.990 0.805 0.465 0.320 0.235

56 Simulations

Table 5.15: Graph with confounders. Q-performance for Remove algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.435 0.280 0.200 0.140 0.175
b = 1 0.560 0.335 0.225 0.210 0.195
b = 1.5 0.485 0.340 0.300 0.265 0.285

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.92 0.755 0.590 0.495 0.420
b = 1 0.82 0.640 0.445 0.280 0.295
b = 1.5 0.83 0.500 0.325 0.280 0.220

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 1.000 0.905 0.885 0.785 0.745
b = 1 0.985 0.890 0.645 0.520 0.490
b = 1.5 0.945 0.740 0.475 0.310 0.280

Table 5.16: Graph with confounders. Q-performance for Fast algorithm

n = 100 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.375 0.235 0.150 0.175 0.100
b = 1 0.360 0.200 0.205 0.120 0.120
b = 1.5 0.410 0.220 0.260 0.200 0.235

n = 1000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.875 0.685 0.560 0.39 0.295
b = 1 0.825 0.500 0.425 0.26 0.215
b = 1.5 0.650 0.375 0.315 0.23 0.220

n = 10000 α = 1 α = 2 α = 3 α = 4 α = 5

b = 0.5 0.990 0.850 0.750 0.630 0.565
b = 1 0.995 0.825 0.605 0.525 0.380
b = 1.5 0.940 0.715 0.405 0.305 0.285

5.2 Some comments 57

1

1

1

1

1

1

X4

X3

X2

X1

X1 X2 X3 X4
True

0.02

0.01

0.12

0.06

0.14

0.88

0.04

0.86

0.99

0.96

0.94

0.98

X4

X3

X2

X1

X1 X2 X3 X4
Drop

0.02

0.03

0.14

0.07

0.06

0.86

0.09

0.94

0.97

0.91

0.93

0.98

X4

X3

X2

X1

X1 X2 X3 X4
Regress

0.02

0.02

0.1

0.02

0.1

0.9

0.05

0.9

0.98

0.95

0.98

0.98

X4

X3

X2

X1

X1 X2 X3 X4
Remove

0.08

0.08

0.2

0.92

0.2

0.8

1

0.8

0.92

1

X4

X3

X2

X1

X1 X2 X3 X4
Fast

Figure 5.8: Graph with confounders. Topological matrices for n = 10000, α = 5, b = 1

58 Simulations

Chapter 6

Conclusions

We introduced a novel method to estimate a causal order from observational data. Built
upon the ideas of Engelke et al. (2018), we first proved the population properties of the Γ
coefficient for a random vector X = (X1, . . . , Xp) modeled by a linear SEM. We assume
positive β’s coefficients and regularly varying distribution for the noise. In the population
case, we proved that it is possible to identify the source node of a linear SEM. Based on
these results, we built four algorithms to estimate the causal order of a random vector X =
(X1, . . . , Xp) from observational data. We tested the sample properties of the algorithms
on simulated data. From the simulations results we concluded the following points:

• The four algorithms perform equally well when the sample size n is large, and when
the tails of the distribution α are heavy. When we depart from these assumptions, we
see that Fast-algorithm underperforms compared to the others (i.e., Drop, Regress
and Remove-algorithm).
• All four algorithms’ performance highly depends on the sample size n. In some

simulations, we observe more than a five-fold improvement in the performance when
we increase the number of observations from 100 to 10, 000.
• The tail-index α, which determines the thickness of the tails, is also very important

in the performance of the algorithms. The performance decreases more than 50%
when α goes from one to five. This effect is sharper when the sample size is small
(e.g., n = 100).
• It is not clear the effect of b, i.e., the average size of the β coefficients. We conjecture

that the ratio b/α affects the performance of the algorithms.
• Overall, the algorithms perform well when the assumptions of Chapter 4 are met

(i.e., when n → ∞ and when α ≈ 1). When we depart from the assumptions, the
algorithms estimates get worse.

There are still many open questions, but we believe that the following points can be the
first ones to address in future related works:

1. Extend lemma 4.4.0.1 to the case of hidden confounders
2. Study and prove the asymptotic properties of the Γ coefficient defined in 4.1.0.1
3. Make the algorithms more robust to the sample size n
4. Test the algorithms on real data from different fields (e.g., finance and genetics)

59

60 Conclusions

Appendix A

Proofs

In this appendix, we present the proofs for some of the propositions and lemmas stated in
Chapter 2 and Chapter 3.

A.1 Proof of Proposition 2.1.0.9

The proof is based on Peters et al. (2017), Appendix B, Proposition B.2.

Proof. We proceed by induction. We start by showing that in each DAG there is a root
node. Start with any node and move to one of its parents (if there is any). You will never
visit a parent that you have seen before (if you did there had been a directed cycle). After
at most p−1 steps you reach a node without any parent (a root node). Let’s call this node
i. Since i is a root node it can be put first in a topological order, i = π−1(1). Consider
the subgraph G′ obtained by removing the root node i, i.e. V ′ = V \ {i}. We see that G′

is still a DAG, hence we can find a root node, say j, and put it in second position in the
topological order, j = π−1(2). If we repeat this procedure until no more vertices are left,
we end up with a valid topological order π for G.

A.2 Proof of Proposition 2.3.2.2

The proof is taken from Meinshausen (2018), Section 2.1, Proposition 2.1.2.

Proof. Using a topological ordering π we can write each node i as a function of the noise
terms Yj with π(j) ≤ π(i) (using the SEM iteratively). That is:

Xi ← gi((Yj)j:π(j)≤π(i))

A.3 Proof of Proposition 3.2.0.3

The proof is taken from Nair et al. (2018), Section 3.1.

61

62 Proofs

Proof. (⇐) Suppose F has power-law tail. Then, there exists a c ≥ 0, k ≥ 0 and α > 0
such that F (x) = kx−α, for x ≥ c. Then, for λ, x such that λx ≥ c we have

F (λx) = k(λx)−α = λ−αkx−α = λ−αF (x)

where g(λ) = λ−α is continuous for λ > 0.

(⇒) First, note that the case where F is identically zero over [c,∞) trivially satisfies the
conditions of the proposition (this corresponds to k = 0). Excluding the trivial case,
we can see that F (x) > 0 for all x ≥ c. Suppose, in fact, that there is x′ ≥ c such
that F (x′) = 0. Then F (x) = F (x′ · xx′) = g(xx′)F (x′) = 0 for all x ≥ c. This means
that we are back to the trivial case.

Now, consider x, y > 0. Pick a z large enough such that z, z · x, z · x · y ≥ c. It
follows that F (z ·x ·y) = F (z)g(x ·y). We could also write F (z ·x ·y) = F (x ·z)g(y) =
F (z)g(x)g(y). Since F (z) > 0, we can conclude that

g(x · y) = g(x)g(y), for all x, y > 0 (A.3.0.1)

It can be shown that the only non-zero function satisfying A.3.0.1 is g(x) = x−α, for
some α ∈ R. Hence

F (x) = F (c · x/c) = g(x/c)F (c) = cαx−αF (c) = kx−α, for x ≥ c

where k = cαF (c) > 0. Finally, since we are dealing with a distribution, we want
that limx→∞ F (x) = 0, so we impose α > 0.

A.4 Proof of Proposition 3.3.0.3

The proof is taken from Nair et al. (2018), Section 3.3.

Proof. (⇐) Suppose f(x) = `(x)xα, where ` ∈ RV (0). Then

f(λx)

f(x)
=
`(λx)

`(x)

(λx)α

xα
∼ 1 · λα, as x→∞

since limx→∞
`(λx)
`(x) = λ0 = 1 by definition 3.3.0.2. Thus, f ∈ RV (α)

(⇒) Suppose f ∈ RV (α). Then, limx→∞
f(λx)
f(x) = λα for λ > 0. Define `(x) = f(x)/xα.

We see that `(x) is slowly varying

`(λx)

`(x)
=
f(λx)

f(x)

1

λα
∼ λα 1

λα
= 1, as x→∞

Hence, we can write f(x) = `(x)xα, where ` ∈ RV (0).

A.5 Proof of Proposition 3.3.0.5 63

A.5 Proof of Proposition 3.3.0.5

The proof is taken from Nair et al. (2018), Section 3.2. It follows the same line as the
proof of proposition 3.2.0.3.

Proof. (⇐) Suppose F ∈ RV (−α) where α > 0. Then we can be write as F (x) =
`(x)x−α, where ` is a slowly varying function. We have that

lim
x→∞

F (λx)

F (x)
= lim

x→∞
λ−αF (x)

F (x)
= λ−α = g(λ)

We see that g is a strictly positive, finite and continuous, for λ > 0 and α > 0. Hence
F is asymptotically scale invariant.

(⇒) Fix x, y > 0. The asymptotic scale-free property implies that

lim
z→∞

F (xyz)

F (z)
= g(xy)

We can also compute the same limit by writing F (xyz)

F (z)
= F (xyz)

F (xz)

F (xz)

F (z)
. Note that

F (xyz)

F (xz)
→ g(y) and F (xz)

F (z)
→ g(x) as z →∞. This implies that

lim
z→∞

F (xyz)

F (z)
= g(x)g(y)

Thus, we conclude that the function g satisfies

g(x · y) = g(x)g(y), for all x, y > 0 (A.5.0.1)

It can be shown that the only non-zero function satisfying A.5.0.1 is g(x) = x−α, for
some α ∈ R. Hence

lim
x→∞

F (λx)

F (x)
= g(λ) = λ−α

where λ > 0. Finally, since we are dealing with a distribution, we want that
limx→∞ F (x) = 0, so we impose α > 0. Hence F ∈ RV (−α).

A.6 Proof of Lemma 3.4.0.1

The proof is taken from Embrechts et al. (2013), Section 1.3.1, Lemma 1.3.1.

64 Proofs

Proof. Using {X + Y > x} ⊃ {X > x} ∪ {Y > x} one easily checks that

P (X + Y > x) ≥ [P (X > x) + P (Y > x)](1− o(1))

If 0 < δ < 1/2, then from

{X + Y > x} ⊂ {X > (1− δ)x} ∪ {Y > (1− δ)x} ∪ {X > δx, Y > δx}
it follows that

P (X + Y > x)

≤ P (X > (1− δ)x) + P (Y > (1− δ)x) + P (X > δx)P (Y > δx)

= [P (X > (1− δ)x) + P (Y > (1− δ)x)](1 + o(1))

Hence

1 ≤ lim inf
x→∞

P (X + Y > x)

P (X > x) + P (Y > x)

≤ lim sup
x→∞

P (X + Y > x)

P (X > x) + P (Y > x)

≤ (1− δ)−α

which proves the result as δ ↓ 0.

A.7 Proof of Lemma 3.4.0.2

Proof. We can write

P (max(X,Y) > u) = 1− P (max(X,Y) < u) = 1− P (X < u, Y < u)

= 1− F (u)2 = 1− (1− F (u))2 = 1− (1− 2F (u) + F (u)2)

= 2F (u)− F (u)2 ∼ 2`(u)u−α − (`(u)u−α)2

where the third equality follows from the independence of X and Y . It follows that

P (max(X,Y) > u)

P (X + Y > u)
∼ 1− (`(u)u−α)2

2`(u)u−α
= 1− o(1), as u→∞

since limu→∞ F (u) = limu→∞ `(u)u−α = 0.

Appendix B

Probability Theory

In this Appendix we review some definitions from probability theory that are used in this
thesis. The presentation is based on Peters et al. (2017), Appendix A.1.

Definition B.0.0.1. We denote with P the distribution of the random vector X =
(X1, . . . , Xp)

Definition B.0.0.2. We denote with x 7→ f(x) the density of the random vector X =
(X1, . . . , Xp). We (sometimes implicitly) assume its existence or continuity.

Definition B.0.0.3. We denote with x 7→ F (x) the cumulative distribution of the
random vector X = (X1, . . . , Xp). We denote with F = 1 − F the right-tail cumulative
distribution.

Definition B.0.0.4. We call X independent of Y and write X ⊥⊥ Y if and only if

f(x, y) = f(x)f(y)

for all x, y.

Definition B.0.0.5. We call X1, . . . , Xp jointly (or mutually) independent if and
only if

f(x1, . . . , xp) = f(x1) · · · · · f(xp)

for all x1, . . . , xp. If X1, . . . , Xp are jointly independent then all pairs Xi and Xj, with
i 6= j, are independent too. The converse does not hold in general.

Definition B.0.0.6. We say that X is conditionally independent of Y given Z, and
write X ⊥⊥ Y | Z, if and only if

f(x, y| z) = f(x| z) f(y| z)

for all x, y, z such that f(z) > 0.

65

66 Probability Theory

Bibliography

Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of
machine learning research 3 (Nov), 507–554.

Colombo, D., M. H. Maathuis, M. Kalisch, and T. S. Richardson (2012). Learning high-
dimensional directed acyclic graphs with latent and selection variables. The Annals of
Statistics, 294–321.

Comon, P., C. Jutten, and J. Herault (1991). Blind separation of sources, part ii: Problems
statement. Signal processing 24 (1), 11–20.

Embrechts, P., C. Klüppelberg, and T. Mikosch (2013). Modelling extremal events: for
insurance and finance, Volume 33. Springer Science & Business Media.

Engelke, S., N. Meinshausen, and J. Peters (forthcoming 2018). Causality in heavy-tailed
models.

Goudet, O., D. Kalainathan, P. Caillou, D. Lopez-Paz, I. Guyon, M. Sebag, A. Tritas, and
P. Tubaro (2017). Learning functional causal models with generative neural networks.
arXiv preprint arXiv:1709.05321 .

Haavelmo, T. (1944). The probability approach in econometrics. Econometrica: Journal
of the Econometric Society , iii–115.

Maathuis, M. (2017, February-May). Course in causality - lecture notes.

Meinshausen, N. (2018, February-May). Course in causality - lecture notes.

Mikosch, T. (1999). Regular variation, subexponentiality and their applications in proba-
bility theory. Eindhoven University of Technology.

Nair, J., A. Wierman, and B. Zwart (in press 2018). The fundamentals of heavy tails:
Properties, emergence, and identification. http://users.cms.caltech.edu/~adamw/

heavytails.html.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible
inference.

Peters, J., D. Janzing, and B. Schölkopf (2017). Elements of Causal Inference: Foundations
and Learning Algorithms. Cambridge, MA, USA: MIT Press.

Ramsey, J. D. (2015). Scaling up greedy causal search for continuous variables. arXiv
preprint arXiv:1507.07749 .

Shimizu, S., P. O. Hoyer, A. Hyvärinen, and A. Kerminen (2006). A linear non-gaussian
acyclic model for causal discovery. Journal of Machine Learning Research 7 (Oct), 2003–
2030.

67

http://users.cms.caltech.edu/~adamw/heavytails.html
http://users.cms.caltech.edu/~adamw/heavytails.html

68 BIBLIOGRAPHY

Shimizu, S., T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. O. Hoyer,
and K. Bollen (2011). Directlingam: A direct method for learning a linear non-gaussian
structural equation model. Journal of Machine Learning Research 12 (Apr), 1225–1248.

Spirtes, P., C. N. Glymour, R. Scheines, D. Heckerman, C. Meek, G. Cooper, and
T. Richardson (2000). Causation, prediction, and search. MIT press.

Spirtes, P., C. Meek, and T. Richardson (1995). Causal inference in the presence of latent
variables and selection bias. In Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence, pp. 499–506. Morgan Kaufmann Publishers Inc.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 267–288.

Vermat, T. and J. Pearl (1990). Equivalence and synthesis of causal models.

Declaration of Originality
The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including
the respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for
their courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have
compiled it in my own words. Parts excepted are corrections of form and content by the
supervisor .

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
• I have committed none of the forms of plagiarism described in the Citation etiquette

information sheet.

• I have documented all methods, data and processes truthfully.

• I have not manipulated any data.

• I have mentioned all persons who were significant facilitators of the work .

• I am aware that the work may be screened electronically for plagiarism.

• I have understood and followed the guidelines in the document Scientific Works in
Mathematics.

Place, date: Signature(s):

For papers written by groups the names of all authors
are required. Their signatures collectively guarantee the
entire content of the written paper.

	Introduction
	Problem and Motivation
	Outline
	Contributions

	Causality
	Graphs
	Bayesian Networks
	Causal Bayesian Networks
	Causal Bayesian Network and do-calculus
	Structural Equation Models (SEM)

	Causal Structure Learning
	Class 1: Learning the Markov Equivalence Class
	Class 2: Leveraging the non-Gaussian noise

	Heavy-Tailed Distributions
	Intuition
	Scale invariance and power-law
	Approximately scale invariance and regularly varying distributions
	Formalizing the catastrophe principle

	Method
	Intuition
	Properties of \Gamma_{ij}
	Setup
	Results

	Examples
	Structure Learning

	Simulations
	Learning a Topological Order
	Q\text{-performance}
	Topological matrix
	Simulation 1 - Simple chain
	Simulation 2 - Polytree
	Simulation 3 - Non-Polytree
	Simulation 4 - Graph with confounders

	Some comments

	Conclusions
	Appendix
	Proofs
	Proof of Proposition 2.1.0.9
	Proof of Proposition 2.3.2.2
	Proof of Proposition 3.2.0.3
	Proof of Proposition 3.3.0.3
	Proof of Proposition 3.3.0.5
	Proof of Lemma 3.4.0.1
	Proof of Lemma 3.4.0.2

	Probability Theory

